On the application of Bayesian Networks in Digital Soil Mapping

K. Taalab, R. Corstanje, J. Zawadzka, T. Mayr*, M.J. Whelan, J.A. Hannam, R. Creamer

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

22 Citations (Scopus)


Two corresponding issues concerning Digital Soil Mapping are the demand for up-to-date, fine resolution soil data and the need to determine soil-landscape relationships. In this study, we propose a Bayesian Network framework as a suitable modelling approach to fulfil these requirements. Bayesian Networks are graphical probabilistic models in which predictions are obtained using prior probabilities derived from either measured data or expert opinion. They represent cause and effect relationships through connections in a network system. The advantage of the Bayesian Networks approach is that the models are easy to interpret and the uncertainty inherent in the relationships between variables can be expressed in terms of probability. In this study we will define the fundamentals of a Bayesian Network and the probability theory that underpins predictions. Then, using case studies, we demonstrate how they can be applied to predict soil properties (bulk density) and soil taxonomic class (associations).

Original languageEnglish
Pages (from-to)134-148
Number of pages15
Publication statusPublished - 1 Dec 2015
Externally publishedYes


  • Bayesian Networks
  • Bulk density
  • Expert knowledge
  • Mapping
  • Modelling
  • Soil


Dive into the research topics of 'On the application of Bayesian Networks in Digital Soil Mapping'. Together they form a unique fingerprint.

Cite this