### Abstract

The determination of order quantities in an inventory control problem of perishable products with non-stationary demand can be formulated as a Mixed Integer Nonlinear Programming problem (MINLP). One challenge is to deal with the ß -service level constraint in terms of the loss function. This paper studies the properties of the optimal solution and derives specific algorithms to determine optimal quantities.

Original language | English |
---|---|

Title of host publication | Computational Science and Its Applications -- ICCSA 2015 , Part II |

Editors | O. Gervasi, B. Murgante, S. Misra, M.L. Gavrilova, A.M. Alves Coutinho Rocha, C. Torre, D. Taniar, B.O. Apduhan |

Place of Publication | Cham, Switzerland |

Publisher | Springer |

Pages | 429-444 |

ISBN (Electronic) | 9783319214078 |

ISBN (Print) | 9783319214061 |

DOIs | |

Publication status | Published - 2015 |

### Publication series

Name | Lecture Notes in Computer Science |
---|---|

Publisher | Springer International Publishing Switzerland |

Number | 9156 |

## Fingerprint Dive into the research topics of 'On computing order quantities for perishable inventory control with non-stationary demand'. Together they form a unique fingerprint.

## Cite this

Alcoba, A. G., Hendrix, E. M. T., Garcia, I., Ortega, G., Pauls-Worm, K. G. J., & Haijema, R. (2015). On computing order quantities for perishable inventory control with non-stationary demand. In O. Gervasi, B. Murgante, S. Misra, M. L. Gavrilova, A. M. Alves Coutinho Rocha, C. Torre, D. Taniar, & B. O. Apduhan (Eds.),

*Computational Science and Its Applications -- ICCSA 2015 , Part II*(pp. 429-444). (Lecture Notes in Computer Science; No. 9156). Springer. https://doi.org/10.1007/978-3-319-21407-8_31