Novel haloalkaliphilic methanotrophic bacteria: An attempt for enhancing methane bio-refinery

Sara Cantera, Irene Sánchez-Andrea, Lidia J. Sadornil, Pedro A. García-Encina, Alfons J.M. Stams, Raúl Muñoz*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

Methane bioconversion into products with a high market value, such as ectoine or hydroxyectoine, can be optimized via isolation of more efficient novel methanotrophic bacteria. The research here presented focused on the enrichment of methanotrophic consortia able to co-produce different ectoines during CH4 metabolism. Four different enrichments (Cow3, Slu3, Cow6 and Slu6) were carried out in basal media supplemented with 3 and 6% NaCl, and using methane as the sole carbon and energy source. The highest ectoine accumulation (∼20 mg ectoine g biomass−1) was recorded in the two consortia enriched at 6% NaCl (Cow6 and Slu6). Moreover, hydroxyectoine was detected for the first time using methane as a feedstock in Cow6 and Slu6 (∼5 mg g biomass−1). The majority of the haloalkaliphilic bacteria identified by 16S rRNA community profiling in both consortia have not been previously described as methanotrophs. From these enrichments, two novel strains (representing novel species) capable of using methane as the sole carbon and energy source were isolated: Alishewanella sp. strain RM1 and Halomonas sp. strain PGE1. Halomonas sp. strain PGE1 showed higher ectoine yields (70–92 mg ectoine g biomass−1) than those previously described for other methanotrophs under continuous cultivation mode (∼37–70 mg ectoine g biomass−1). The results here obtained highlight the potential of isolating novel methanotrophs in order to boost the competitiveness of industrial CH4-based ectoine production.

Original languageEnglish
Pages (from-to)1091-1099
JournalJournal of Environmental Management
Volume231
DOIs
Publication statusPublished - 1 Feb 2019

Keywords

  • Alishewanella
  • CH bio-refinery
  • Ectoine
  • Halomonas
  • Methane treatment

Fingerprint Dive into the research topics of 'Novel haloalkaliphilic methanotrophic bacteria: An attempt for enhancing methane bio-refinery'. Together they form a unique fingerprint.

  • Cite this