TY - JOUR
T1 - Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain
AU - García-Díaz, Andrés
AU - Bienes, Ramón
AU - Sastre, Blanca
AU - Novara, Agata
AU - Gristina, Luciano
AU - Cerda Bolinches, Artemio
PY - 2017
Y1 - 2017
N2 - The soils of Mediterranean vineyards are usually managed with continuous tillage, resulting in bare soil, low infiltration and high soil erosion rates. Soil nutrients, such as nitrogen, could be lost dissolved in the runoff, causing a decrease in soil fertility on such degraded soils and producing eutrophication downstream. The influences of groundcover on the soil erosion processes and sediment yields in Mediterranean vineyards have been widely addressed. However, the runoff process itself, excluding the effect of raindrop impacts, has barely been studied. Thus, a field runoff simulator was built to assess runoff and nutrient losses under different soil management strategies in Central Spain. In the winter of the 2012–2013, four vineyards were selected, and two types of groundcover were established to compare with conventional tillage (T): spontaneous vegetation (CS) and seeded Brachypodium distachyon (CB). In 2014 and 2015, 72 runoff simulations were performed to assess the influence of the two different types of groundcover on the dissolved mineral nitrogen losses in runoff. The results showed that spontaneous vegetation cover was the most effective management choice to reduce runoff and nitrogen loss by producing 3 times less runoff than conventional tillage and 6 times less nitrate loss. Conventional tillage resulted in higher mineral nitrogen loss because it produced more runoff and higher runoff nitrate concentrations. The vegetation cover had a strong influence on runoff and nitrogen losses, while the slope angle and rock fragment cover showed a negligible impact.
AB - The soils of Mediterranean vineyards are usually managed with continuous tillage, resulting in bare soil, low infiltration and high soil erosion rates. Soil nutrients, such as nitrogen, could be lost dissolved in the runoff, causing a decrease in soil fertility on such degraded soils and producing eutrophication downstream. The influences of groundcover on the soil erosion processes and sediment yields in Mediterranean vineyards have been widely addressed. However, the runoff process itself, excluding the effect of raindrop impacts, has barely been studied. Thus, a field runoff simulator was built to assess runoff and nutrient losses under different soil management strategies in Central Spain. In the winter of the 2012–2013, four vineyards were selected, and two types of groundcover were established to compare with conventional tillage (T): spontaneous vegetation (CS) and seeded Brachypodium distachyon (CB). In 2014 and 2015, 72 runoff simulations were performed to assess the influence of the two different types of groundcover on the dissolved mineral nitrogen losses in runoff. The results showed that spontaneous vegetation cover was the most effective management choice to reduce runoff and nitrogen loss by producing 3 times less runoff than conventional tillage and 6 times less nitrate loss. Conventional tillage resulted in higher mineral nitrogen loss because it produced more runoff and higher runoff nitrate concentrations. The vegetation cover had a strong influence on runoff and nitrogen losses, while the slope angle and rock fragment cover showed a negligible impact.
KW - Groundcover
KW - Nutrient loss
KW - Runoff simulation
KW - Soil management
KW - Vineyards
U2 - 10.1016/j.agee.2016.12.013
DO - 10.1016/j.agee.2016.12.013
M3 - Article
AN - SCOPUS:85005943235
VL - 236
SP - 256
EP - 267
JO - Agriculture, Ecosystems and Environment
JF - Agriculture, Ecosystems and Environment
SN - 0167-8809
ER -