Abstract
Dormancy is a state of metabolic arrest that facilitates the survival of organisms during environmental conditions incompatible with their regular course of life. Many organisms have deep dormant stages to promote an extended life span (increased longevity). In contrast, plants have seed dormancy and seed longevity described as two traits. Seed dormancy is defined as a temporary failure of a viable seed to germinate in conditions that favor germination, whereas seed longevity is defined as seed viability after dry storage (storability). In plants, the association of seed longevity with seed dormancy has not been studied in detail. This is surprising given the ecological, agronomical, and economic importance of seed longevity. We studied seed longevity to reveal its genetic regulators and its association with seed dormancy in Arabidopsis (Arabidopsis thaliana). Integrated quantitative trait locus analyses for seed longevity, in six recombinant inbred line populations, revealed five loci: Germination Ability After Storage1 (GAAS1) to GAAS5. GAAS loci colocated with seed dormancy loci, Delay Of Germination (DOG), earlier identified in the same six recombinant inbred line populations. Both GAAS loci and their colocation with DOG loci were validated by near isogenic lines. A negative correlation was observed, deep seed dormancy correlating with low seed longevity and vice versa. Detailed analysis on the collocating GAAS5 and DOG1 quantitative trait loci revealed that the DOG1-Cape Verde Islands allele both reduces seed longevity and increases seed dormancy. To our knowledge, this study is the first to report a negative correlation between seed longevity and seed dormancy.
Original language | English |
---|---|
Pages (from-to) | 2083-2092 |
Journal | Plant Physiology |
Volume | 160 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2012 |
Keywords
- oryza-sativa l.
- controlled deterioration
- allelic variation
- germination
- loci
- storability
- mechanisms
- resistance
- thaliana
- kinetics