Natural products – learning chemistry from plants

A. Staniek, H.J. Bouwmeester, P.D. Fraser, O. Kayser, S. Martens, A. Tissier, A.R. van der Krol, L. Wessjohann, H. Warzecha

Research output: Contribution to journalArticleAcademicpeer-review

29 Citations (Scopus)

Abstract

Plant natural products (PNPs) are unique in that they represent a vast array of different structural features, ranging from relatively simple molecules to very complex ones. Given the fact that many plant secondary metabolites exhibit profound biological activity, they are frequently used as fragrances and flavors, medicines, as well as industrial chemicals. As the intricate structures of PNPs often cannot be mimicked by chemical synthesis, the original plant providers constitute the sole source for their industrial, large-scale production. However, sufficient supply is not guaranteed for all molecules of interest, making the development of alternative production systems a priority. Modern techniques, such as genome mining and thorough biochemical analysis, have helped us gain preliminary understanding of the enzymatic formation of the valuable ingredients in planta. Herein, we review recent advances in the application of biocatalytical processes, facilitating generation of complex PNPs through utilization of plant-derived specific enzymes and combinatorial biochemistry. We further evaluate the options of employing heterologous organisms harboring PNP biosynthetic pathways for the production of secondary metabolites of interest.
Original languageEnglish
Pages (from-to)326-336
JournalBiotechnology Journal
Volume9
Issue number3
DOIs
Publication statusPublished - 2014

Keywords

  • escherichia-coli
  • benzylisoquinoline alkaloids
  • saccharomyces-cerevisiae
  • vanillin production
  • synthetic biology
  • organic-synthesis
  • biosynthesis
  • biocatalysis
  • artemisinin
  • enzymes

Fingerprint Dive into the research topics of 'Natural products – learning chemistry from plants'. Together they form a unique fingerprint.

Cite this