Natural genetic variation for regulation of photosynthesis response to light in Arabidopsis thaliana

R. van Rooijen

Research output: Thesisinternal PhD, WUAcademic

Abstract

The efficiency of photosynthesis results from the composition and organization of the plant’s internal structural components as well as the capability of response to environmental fluctuations. This thesis aims at identifying the genetic loci that are regulating the (sub-) processes in photosynthetic acclimation to increased irradiance levels, in order to obtain the genetic information useful to breed for photosynthetic performance. It uses genome wide association studies (GWAS) to reveal which genetic loci are being exploited in nature for keeping good photosynthetic performances in natural conditions. Phenotypic variation among natural accessions in photosynthetic light use efficiency response to increased growth irradiance is related to its variation in genetics in order to identify the associated genetic loci. In Chapter 2 is described which light environment reveals most natural variation in photosynthetic performance and for which photosynthetic parameter this is. It shows different Arabidopsis accessions display different photosynthetic responses to various light environments, well relatable to genetic differences. A candidate gene list for the direct response to increased growth irradiance was revealed after performing genome wide association analysis. Chapter 3 elaborates on the genome wide association results by visualizing the dynamics of the associated genetic loci over the time course of the photosynthetic response to increased irradiance. It shows it is possible to simplify the complexity of photosynthetic physiology as well as the genetic analysis in such way to confirm the causal genes underlying the associated loci, by confirming this for the YELLOW SEEDLING 1 (YS1) gene, a gene encoding a Pentatrico-Peptide-Repeat (PPR) protein involved in RNA editing of plastid-encoded genes essential for photosystems I and II. Genetic variation for any trait can be on the transcriptional level or on the functional level. In Chapter 4, the gene regulation in three Arabidopsis accessions with contrasting photosynthesis efficiency responses to increased irradiance is studied. These differences in photosynthesis efficiency are associated to differences in activation extents of heat responsive genes as well as to differences in the presence of a gene activation pathway acting on membrane lipid remodelling, suggested to maintain balanced cellular phosphate concentrations. Chapter 5 confirms the significance of maintaining balanced cellular phosphate concentrations for photosynthesis efficiency responses to increased irradiance. It describes how genome wide association mapping and linkage mapping combine to reveal genetic epistatic interactions between PHOSPHATIDIC ACID PHOPSPHOHYDROLASE 2  (PAH2, phosphate metabolism gene) and ASPARAGINE SYNTHETASE 2 (ASN2, nitrogen metabolism gene), both acting in the delivery of orthophosphate in the chloroplast. In conclusion this thesis contributes new insights into the physiological and molecular pathways underlying photosynthesis responses to increased growth irradiances.

LanguageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Wageningen University
Supervisors/Advisors
  • Koornneef, Maarten, Promotor
  • Aarts, Mark, Co-promotor
  • Harbinson, Jeremy, Co-promotor
Award date5 Jul 2016
Place of PublicationWageningen
Publisher
Print ISBNs9789462578203
DOIs
Publication statusPublished - 2016

Fingerprint

Arabidopsis thaliana
photosynthesis
genetic variation
genes
loci
phosphates
chromosome mapping
aspartate-ammonia ligase
Arabidopsis
RNA editing
gene activation
genome
orthophosphates
photosystem I
nitrogen metabolism
phenotypic variation
photosystem II
plastids
genetic techniques and protocols
light intensity

Keywords

  • arabidopsis thaliana
  • photosynthesis
  • genetic variation
  • light
  • efficiency

Cite this

van Rooijen, R.. / Natural genetic variation for regulation of photosynthesis response to light in Arabidopsis thaliana. Wageningen : Wageningen University, 2016. 235 p.
@phdthesis{f93fe07cd98442ccab5947387cc5b2f7,
title = "Natural genetic variation for regulation of photosynthesis response to light in Arabidopsis thaliana",
abstract = "The efficiency of photosynthesis results from the composition and organization of the plant’s internal structural components as well as the capability of response to environmental fluctuations. This thesis aims at identifying the genetic loci that are regulating the (sub-) processes in photosynthetic acclimation to increased irradiance levels, in order to obtain the genetic information useful to breed for photosynthetic performance. It uses genome wide association studies (GWAS) to reveal which genetic loci are being exploited in nature for keeping good photosynthetic performances in natural conditions. Phenotypic variation among natural accessions in photosynthetic light use efficiency response to increased growth irradiance is related to its variation in genetics in order to identify the associated genetic loci. In Chapter 2 is described which light environment reveals most natural variation in photosynthetic performance and for which photosynthetic parameter this is. It shows different Arabidopsis accessions display different photosynthetic responses to various light environments, well relatable to genetic differences. A candidate gene list for the direct response to increased growth irradiance was revealed after performing genome wide association analysis. Chapter 3 elaborates on the genome wide association results by visualizing the dynamics of the associated genetic loci over the time course of the photosynthetic response to increased irradiance. It shows it is possible to simplify the complexity of photosynthetic physiology as well as the genetic analysis in such way to confirm the causal genes underlying the associated loci, by confirming this for the YELLOW SEEDLING 1 (YS1) gene, a gene encoding a Pentatrico-Peptide-Repeat (PPR) protein involved in RNA editing of plastid-encoded genes essential for photosystems I and II. Genetic variation for any trait can be on the transcriptional level or on the functional level. In Chapter 4, the gene regulation in three Arabidopsis accessions with contrasting photosynthesis efficiency responses to increased irradiance is studied. These differences in photosynthesis efficiency are associated to differences in activation extents of heat responsive genes as well as to differences in the presence of a gene activation pathway acting on membrane lipid remodelling, suggested to maintain balanced cellular phosphate concentrations. Chapter 5 confirms the significance of maintaining balanced cellular phosphate concentrations for photosynthesis efficiency responses to increased irradiance. It describes how genome wide association mapping and linkage mapping combine to reveal genetic epistatic interactions between PHOSPHATIDIC ACID PHOPSPHOHYDROLASE 2  (PAH2, phosphate metabolism gene) and ASPARAGINE SYNTHETASE 2 (ASN2, nitrogen metabolism gene), both acting in the delivery of orthophosphate in the chloroplast. In conclusion this thesis contributes new insights into the physiological and molecular pathways underlying photosynthesis responses to increased growth irradiances.",
keywords = "arabidopsis thaliana, photosynthesis, genetic variation, light, efficiency, arabidopsis thaliana, fotosynthese, genetische variatie, licht, effici{\"e}ntie",
author = "{van Rooijen}, R.",
note = "WU thesis 6409",
year = "2016",
doi = "10.18174/382144",
language = "English",
isbn = "9789462578203",
publisher = "Wageningen University",
school = "Wageningen University",

}

Natural genetic variation for regulation of photosynthesis response to light in Arabidopsis thaliana. / van Rooijen, R.

Wageningen : Wageningen University, 2016. 235 p.

Research output: Thesisinternal PhD, WUAcademic

TY - THES

T1 - Natural genetic variation for regulation of photosynthesis response to light in Arabidopsis thaliana

AU - van Rooijen, R.

N1 - WU thesis 6409

PY - 2016

Y1 - 2016

N2 - The efficiency of photosynthesis results from the composition and organization of the plant’s internal structural components as well as the capability of response to environmental fluctuations. This thesis aims at identifying the genetic loci that are regulating the (sub-) processes in photosynthetic acclimation to increased irradiance levels, in order to obtain the genetic information useful to breed for photosynthetic performance. It uses genome wide association studies (GWAS) to reveal which genetic loci are being exploited in nature for keeping good photosynthetic performances in natural conditions. Phenotypic variation among natural accessions in photosynthetic light use efficiency response to increased growth irradiance is related to its variation in genetics in order to identify the associated genetic loci. In Chapter 2 is described which light environment reveals most natural variation in photosynthetic performance and for which photosynthetic parameter this is. It shows different Arabidopsis accessions display different photosynthetic responses to various light environments, well relatable to genetic differences. A candidate gene list for the direct response to increased growth irradiance was revealed after performing genome wide association analysis. Chapter 3 elaborates on the genome wide association results by visualizing the dynamics of the associated genetic loci over the time course of the photosynthetic response to increased irradiance. It shows it is possible to simplify the complexity of photosynthetic physiology as well as the genetic analysis in such way to confirm the causal genes underlying the associated loci, by confirming this for the YELLOW SEEDLING 1 (YS1) gene, a gene encoding a Pentatrico-Peptide-Repeat (PPR) protein involved in RNA editing of plastid-encoded genes essential for photosystems I and II. Genetic variation for any trait can be on the transcriptional level or on the functional level. In Chapter 4, the gene regulation in three Arabidopsis accessions with contrasting photosynthesis efficiency responses to increased irradiance is studied. These differences in photosynthesis efficiency are associated to differences in activation extents of heat responsive genes as well as to differences in the presence of a gene activation pathway acting on membrane lipid remodelling, suggested to maintain balanced cellular phosphate concentrations. Chapter 5 confirms the significance of maintaining balanced cellular phosphate concentrations for photosynthesis efficiency responses to increased irradiance. It describes how genome wide association mapping and linkage mapping combine to reveal genetic epistatic interactions between PHOSPHATIDIC ACID PHOPSPHOHYDROLASE 2  (PAH2, phosphate metabolism gene) and ASPARAGINE SYNTHETASE 2 (ASN2, nitrogen metabolism gene), both acting in the delivery of orthophosphate in the chloroplast. In conclusion this thesis contributes new insights into the physiological and molecular pathways underlying photosynthesis responses to increased growth irradiances.

AB - The efficiency of photosynthesis results from the composition and organization of the plant’s internal structural components as well as the capability of response to environmental fluctuations. This thesis aims at identifying the genetic loci that are regulating the (sub-) processes in photosynthetic acclimation to increased irradiance levels, in order to obtain the genetic information useful to breed for photosynthetic performance. It uses genome wide association studies (GWAS) to reveal which genetic loci are being exploited in nature for keeping good photosynthetic performances in natural conditions. Phenotypic variation among natural accessions in photosynthetic light use efficiency response to increased growth irradiance is related to its variation in genetics in order to identify the associated genetic loci. In Chapter 2 is described which light environment reveals most natural variation in photosynthetic performance and for which photosynthetic parameter this is. It shows different Arabidopsis accessions display different photosynthetic responses to various light environments, well relatable to genetic differences. A candidate gene list for the direct response to increased growth irradiance was revealed after performing genome wide association analysis. Chapter 3 elaborates on the genome wide association results by visualizing the dynamics of the associated genetic loci over the time course of the photosynthetic response to increased irradiance. It shows it is possible to simplify the complexity of photosynthetic physiology as well as the genetic analysis in such way to confirm the causal genes underlying the associated loci, by confirming this for the YELLOW SEEDLING 1 (YS1) gene, a gene encoding a Pentatrico-Peptide-Repeat (PPR) protein involved in RNA editing of plastid-encoded genes essential for photosystems I and II. Genetic variation for any trait can be on the transcriptional level or on the functional level. In Chapter 4, the gene regulation in three Arabidopsis accessions with contrasting photosynthesis efficiency responses to increased irradiance is studied. These differences in photosynthesis efficiency are associated to differences in activation extents of heat responsive genes as well as to differences in the presence of a gene activation pathway acting on membrane lipid remodelling, suggested to maintain balanced cellular phosphate concentrations. Chapter 5 confirms the significance of maintaining balanced cellular phosphate concentrations for photosynthesis efficiency responses to increased irradiance. It describes how genome wide association mapping and linkage mapping combine to reveal genetic epistatic interactions between PHOSPHATIDIC ACID PHOPSPHOHYDROLASE 2  (PAH2, phosphate metabolism gene) and ASPARAGINE SYNTHETASE 2 (ASN2, nitrogen metabolism gene), both acting in the delivery of orthophosphate in the chloroplast. In conclusion this thesis contributes new insights into the physiological and molecular pathways underlying photosynthesis responses to increased growth irradiances.

KW - arabidopsis thaliana

KW - photosynthesis

KW - genetic variation

KW - light

KW - efficiency

KW - arabidopsis thaliana

KW - fotosynthese

KW - genetische variatie

KW - licht

KW - efficiëntie

U2 - 10.18174/382144

DO - 10.18174/382144

M3 - internal PhD, WU

SN - 9789462578203

PB - Wageningen University

CY - Wageningen

ER -