TY - JOUR
T1 - Mycoprotein ingestion stimulates protein synthesis rates to a greater extent than milk protein in rested and exercised skeletal muscle of healthy young men
T2 - A randomized controlled trial
AU - Monteyne, Alistair J.
AU - Coelho, Mariana O.C.
AU - Porter, Craig
AU - Abdelrahman, Doaa R.
AU - Jameson, Thomas S.O.
AU - Jackman, Sarah R.
AU - Blackwell, Jamie R.
AU - Finnigan, Tim J.A.
AU - Stephens, Francis B.
AU - Dirks, Marlou L.
AU - Wall, Benjamin T.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Background: Mycoprotein is a fungal-derived sustainable protein-rich food source, and its ingestion results in systemic amino acid and leucine concentrations similar to that following milk protein ingestion. Objective: We assessed the mixed skeletal muscle protein synthetic response to the ingestion of a single bolus of mycoprotein compared with a leucine-matched bolus of milk protein, in rested and exercised muscle of resistance-trained young men. Methods: Twenty resistance-trained healthy young males (age: 22 ± 1 y, body mass: 82 ± 2 kg, BMI: 25 ± 1 kg·m−2) took part in a randomized, double-blind, parallel-group study. Participants received primed, continuous infusions of L-[ring-2H5]phenylalanine and ingested either 31 g (26.2 g protein: 2.5 g leucine) milk protein (MILK) or 70 g (31.5 g protein: 2.5 g leucine) mycoprotein (MYCO) following a bout of unilateral resistance-type exercise (contralateral leg acting as resting control). Blood and m. vastus lateralis muscle samples were collected before exercise and protein ingestion, and following a 4-h postprandial period to assess mixed muscle fractional protein synthetic rates (FSRs) and myocellular signaling in response to the protein beverages in resting and exercised muscle. Results: Mixed muscle FSRs increased following MILK ingestion (from 0.036 ± 0.008 to 0.052 ± 0.006%·h−1 in rested, and 0.035 ± 0.008 to 0.056 ± 0.005%·h−1 in exercised muscle; P <0.01) but to a greater extent following MYCO ingestion (from 0.025 ± 0.006 to 0.057 ± 0.004%·h−1 in rested, and 0.024 ± 0.007 to 0.072 ± 0.005%·h−1 in exercised muscle; P <0.0001) (treatment × time interaction effect; P <0.05). Postprandial FSRs trended to be greater in MYCO compared with MILK (0.065 ± 0.004 compared with 0.054 ± 0.004%·h−1, respectively; P = 0.093) and the postprandial rise in FSRs was greater in MYCO compared with MILK (Delta 0.040 ± 0.006 compared with Delta 0.018 ± 0.005%·h−1, respectively; P <0.01). Conclusions: The ingestion of a single bolus of mycoprotein stimulates resting and postexercise muscle protein synthesis rates, and to a greater extent than a leucine-matched bolus of milk protein, in resistance-trained young men. This trial was registered at clinical trials.gov as 660065600. Am J Clin Nutr 2020;112:318-333.
AB - Background: Mycoprotein is a fungal-derived sustainable protein-rich food source, and its ingestion results in systemic amino acid and leucine concentrations similar to that following milk protein ingestion. Objective: We assessed the mixed skeletal muscle protein synthetic response to the ingestion of a single bolus of mycoprotein compared with a leucine-matched bolus of milk protein, in rested and exercised muscle of resistance-trained young men. Methods: Twenty resistance-trained healthy young males (age: 22 ± 1 y, body mass: 82 ± 2 kg, BMI: 25 ± 1 kg·m−2) took part in a randomized, double-blind, parallel-group study. Participants received primed, continuous infusions of L-[ring-2H5]phenylalanine and ingested either 31 g (26.2 g protein: 2.5 g leucine) milk protein (MILK) or 70 g (31.5 g protein: 2.5 g leucine) mycoprotein (MYCO) following a bout of unilateral resistance-type exercise (contralateral leg acting as resting control). Blood and m. vastus lateralis muscle samples were collected before exercise and protein ingestion, and following a 4-h postprandial period to assess mixed muscle fractional protein synthetic rates (FSRs) and myocellular signaling in response to the protein beverages in resting and exercised muscle. Results: Mixed muscle FSRs increased following MILK ingestion (from 0.036 ± 0.008 to 0.052 ± 0.006%·h−1 in rested, and 0.035 ± 0.008 to 0.056 ± 0.005%·h−1 in exercised muscle; P <0.01) but to a greater extent following MYCO ingestion (from 0.025 ± 0.006 to 0.057 ± 0.004%·h−1 in rested, and 0.024 ± 0.007 to 0.072 ± 0.005%·h−1 in exercised muscle; P <0.0001) (treatment × time interaction effect; P <0.05). Postprandial FSRs trended to be greater in MYCO compared with MILK (0.065 ± 0.004 compared with 0.054 ± 0.004%·h−1, respectively; P = 0.093) and the postprandial rise in FSRs was greater in MYCO compared with MILK (Delta 0.040 ± 0.006 compared with Delta 0.018 ± 0.005%·h−1, respectively; P <0.01). Conclusions: The ingestion of a single bolus of mycoprotein stimulates resting and postexercise muscle protein synthesis rates, and to a greater extent than a leucine-matched bolus of milk protein, in resistance-trained young men. This trial was registered at clinical trials.gov as 660065600. Am J Clin Nutr 2020;112:318-333.
KW - Amino acids
KW - Muscle protein synthesis
KW - Mycoprotein
KW - Protein metabolism
KW - Resistance exercise
U2 - 10.1093/ajcn/nqaa092
DO - 10.1093/ajcn/nqaa092
M3 - Article
C2 - 32438401
AN - SCOPUS:85089129999
SN - 0002-9165
VL - 112
SP - 318
EP - 333
JO - American Journal of Clinical Nutrition
JF - American Journal of Clinical Nutrition
IS - 2
ER -