Mutation-rate plasticity and the germline of unicellular organisms

Duur K. Aanen*, Alfons J.M. Debets

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

8 Citations (Scopus)


The mutation rate is a fundamental factor in evolutionary genetics. Recently, mutation rates were found to be strongly reduced at high density in a wide range of unicellular organisms, prokaryotic and eukaryotic. Independently, cell division was found to become more asymmetrical at increasing density in diverse organisms; some 'mother' cells continue dividing, while their 'offspring' cells do not divide further. Here, we investigate how this increased asymmetry in cell division at high density can be reconciled with reduced mutation-rate estimates. We calculated the expected number of mutant cells due to replication errors under various modes of segregation of template-DNA strands and copy-DNA strands, both under symmetrical (exponential) and asymmetrical (linear) growth. We show that the observed reduction in the mutation rate at high density can be explained if mother cells preferentially retain the template-DNA strands, since new mutations are then confined to non-dividing daughter cells, thus reducing the spread of mutant cells. Any other inheritance mode results in an increase in the number of mutant cells at higher density. The proposed hypothesis that patterns of DNA-strand segregation are density-dependent fundamentally challenges our current understanding of mutation-rate estimates and extends the distinction between germline and soma to unicellular organisms.

Original languageEnglish
Number of pages7
JournalProceedings. Biological sciences
Issue number1902
Publication statusPublished - May 2019


  • asymmetrical cell division
  • density-associated mutation-rate plasticity
  • germline–soma distinction
  • immortal strand hypothesis
  • mutation rate
  • unicellular organisms


Dive into the research topics of 'Mutation-rate plasticity and the germline of unicellular organisms'. Together they form a unique fingerprint.

Cite this