Mutant analysis in the non‐legume Parasponia andersonii identifies NIN and NF‐YA1 transcription factors as a core genetic network in nitrogen‐fixing nodule symbioses

F. Bu, L.J.J. Rutten, Yuda Roswanjaya, O. Kulikova, Marta Rodriguez-Franco, Thomas Ott, A.H.J. Bisseling, A.L. van Zeijl, R. Geurts*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

Nitrogen‐fixing nodulation occurs in ten taxonomic lineages, either with rhizobia or Frankia bacteria. To establish such an endosymbiosis, two processes are essential: nodule organogenesis and intracellular bacterial infection. In the legume‐rhizobium endosymbiosis, both processes are guarded by the transcription factor NODULE INCEPTION (NIN) and its downstream target genes of the NUCLEAR FACTOR Y (NF‐Y) complex.
It is hypothesized that nodulation has a single evolutionary origin ~ 110 million years ago, followed by many independent losses. Despite a significant body of knowledge of the legume‐rhizobium symbiosis, it remains elusive which signalling modules are shared between nodulating species in different taxonomic clades. We used Parasponia andersonii to investigate the role of NIN and NF‐YA genes in rhizobium nodulation in a non‐legume system.
Consistent with legumes, P. andersonii PanNIN and PanNF‐YA1 are co‐expressed in nodules. By analyzing single, double and higher‐order CRISPR‐Cas9 knockout mutants, we show that nodule organogenesis and early symbiotic expression of PanNF‐YA1 are PanNIN‐dependent and that PanNF‐YA1 is specifically required for intracellular rhizobium infection.
This demonstrates that NIN and NF‐YA1 commit conserved symbiotic functions. As Parasponia and legumes diverged soon after the birth of the nodulation trait, we argue that NIN and NF‐YA1 represent core transcriptional regulators in this symbiosis.
Original languageEnglish
Pages (from-to)541-554
JournalNew Phytologist
Volume226
Issue number2
Early online date21 Dec 2019
DOIs
Publication statusPublished - Apr 2020

Fingerprint Dive into the research topics of 'Mutant analysis in the non‐legume Parasponia andersonii identifies NIN and NF‐YA1 transcription factors as a core genetic network in nitrogen‐fixing nodule symbioses'. Together they form a unique fingerprint.

  • Cite this