Multimodel ensembles improve predictions of crop–environment–management interactions

Daniel Wallach*, Pierre Martre, Bing Liu, Senthold Asseng, Frank Ewert, Peter J. Thorburn, Martin van Ittersum, Pramod K. Aggarwal, Mukhtar Ahmed, Bruno Basso, Christian Biernath, Davide Cammarano, Andrew J. Challinor, Giacomo De Sanctis, Benjamin Dumont, Ehsan Eyshi Rezaei, Elias Fereres, Glenn J. Fitzgerald, Y. Gao, Margarita Garcia-VilaSebastian Gayler, Christine Girousse, Gerrit Hoogenboom, Heidi Horan, Roberto C. Izaurralde, Curtis D. Jones, Belay T. Kassie, Christian C. Kersebaum, Christian Klein, Ann Kristin Koehler, Andrea Maiorano, Sara Minoli, Christoph Müller, Soora Naresh Kumar, Claas Nendel, Garry J. O'Leary, Taru Palosuo, Eckart Priesack, Dominique Ripoche, Reimund P. Rötter, Mikhail A. Semenov, Claudio Stöckle, Pierre Stratonovitch, Thilo Streck, Iwan Supit, Fulu Tao, Joost Wolf, Zhao Zhang

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

117 Citations (Scopus)

Fingerprint

Dive into the research topics of 'Multimodel ensembles improve predictions of crop–environment–management interactions'. Together they form a unique fingerprint.

Mathematics