Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

Qian Cai, Yulong Zhang*, Zhanxiang Sun, Jiaming Zheng, Wei Bai, Yue Zhang, Liu Yang, Liangshan Feng, Chen Feng, Zhe Zhang, Ning Yang, Jochem Evers, Lizhen Zhang

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)

Abstract

A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above-A nd below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root = shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

Original languageEnglish
Pages (from-to)3851-3858
JournalBiogeosciences
Volume14
Issue number16
DOIs
Publication statusPublished - 2017

Fingerprint Dive into the research topics of 'Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize'. Together they form a unique fingerprint.

Cite this