Morphing of liquid crystal surfaces by emergent collectivity

Hanne M. van der Kooij, Slav A. Semerdzhiev, Jesse Buijs, Dirk J. Broer, Danqing Liu, Joris Sprakel*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

21 Citations (Scopus)


Liquid crystal surfaces can undergo topographical morphing in response to external cues. These shape-shifting coatings promise a revolution in various applications, from haptic feedback in soft robotics or displays to self-cleaning solar panels. The changes in surface topography can be controlled by tailoring the molecular architecture and mechanics of the liquid crystal network. However, the nanoscopic mechanisms that drive morphological transitions remain unclear. Here, we introduce a frequency-resolved nanostrain imaging method to elucidate the emergent dynamics underlying field-induced shape-shifting. We show how surface morphing occurs in three distinct stages: (i) the molecular dipoles oscillate with the alternating field (10–100 ms), (ii) this leads to collective plasticization of the glassy network (~1 s), (iii) culminating in actuation of the topography (10–100 s). The first stage appears universal and governed by dielectric coupling. By contrast, yielding and deformation rely on a delicate balance between liquid crystal order, field properties and network viscoelasticity.

Original languageEnglish
Article number3501
JournalNature Communications
Publication statusPublished - 5 Aug 2019


Dive into the research topics of 'Morphing of liquid crystal surfaces by emergent collectivity'. Together they form a unique fingerprint.

Cite this