Molecular Mobility in Amorphous Biobased Poly(ethylene 2,5-furandicarboxylate) and Poly(ethylene 2,4-furandicarboxylate)

Aurélie Bourdet, Antonella Esposito*, Shanmugam Thiyagarajan, Laurent Delbreilh, Frédéric Affouard, Rutger J.I. Knoop, Eric Dargent

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)

Abstract

Among all the emergent biobased polymers, poly(ethylene 2,5-furandicarboxylate) (2,5-PEF) seems to be particularly interesting for packaging applications. This work is focused on the investigation of the relaxation dynamics and the macromolecular mobility in totally amorphous 2,5-PEF as well as in the less studied poly(ethylene 2,4-furandicarboxylate) (2,4-PEF). Both biopolymers were investigated by differential scanning calorimetry and dielectric relaxation spectroscopy in a large range of temperatures and frequencies. The main parameters describing the relaxation dynamics and the molecular mobility in 2,5-PEF and 2,4-PEF, such as the glass transition temperature, the temperature dependence of the α and β relaxation times, the fragility index, and the apparent activation energy of the secondary relaxation, were determined and discussed. 2,5-PEF showed a higher value of the dielectric strength as compared to 2,4-PEF and other well-known polyesters, such as poly(ethylene terephthalate), which was confirmed by molecular dynamics simulations. According to the Angell's classification of glass-forming liquids, amorphous PEFs behave as stronger glass-formers in comparison with other polyesters, which may be correlated to the packing efficiency of the macromolecular chains and therefore to the free volume and the barrier properties.

Original languageEnglish
Pages (from-to)1937-1945
JournalMacromolecules
Volume51
Issue number5
DOIs
Publication statusPublished - 13 Mar 2018

Fingerprint Dive into the research topics of 'Molecular Mobility in Amorphous Biobased Poly(ethylene 2,5-furandicarboxylate) and Poly(ethylene 2,4-furandicarboxylate)'. Together they form a unique fingerprint.

Cite this