Moisture content estimation and senescence phenotyping of novel Miscanthus hybrids combining UAV-based remote sensing and machine learning

Giorgio Impollonia*, Michele Croci, Enrico Martani, Andrea Ferrarini, Jason Kam, Luisa M. Trindade, John Clifton-Brown, Stefano Amaducci

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

Miscanthus is a leading perennial biomass crop that can produce high yields on marginal lands. Moisture content is a highly relevant biomass quality trait with multiple impacts on efficiencies of harvest, transport, and storage. The dynamics of moisture content during senescence and overwinter ripening are determined by genotype × environment interactions. In this paper, unmanned aerial vehicle (UAV)-based remote sensing was used for high-throughput plant phenotyping (HTPP) of the moisture content dynamics during autumn and winter senescence of 14 contrasting hybrid types (progeny of M. sinensis x M. sinensis [M. sin x M. sin, eight types] and M. sinensis x M. sacchariflorus [M. sin x M. sac, six types]). The time series of moisture content was estimated using machine learning (ML) models and a range of vegetation indices (VIs) derived from UAV-based remote sensing. The most important VIs for moisture content estimation were selected by the recursive feature elimination (RFE) algorithm and were BNDVI, GDVI, and PSRI. The ML model transferability was high only when the moisture content was above 30%. The best ML model accuracy was achieved by combining VIs and categorical variables (5.6% of RMSE). This model was used for phenotyping senescence dynamics and identifying the stay-green (SG) trait of Miscanthus hybrids using the generalized additive model (GAM). Combining ML and GAM modeling, applied to time series of moisture content values estimated from VIs derived from multiple UAV flights, proved to be a powerful tool for HTPP.

Original languageEnglish
Pages (from-to)639-656
JournalGCB Bioenergy
Volume14
Issue number6
DOIs
Publication statusPublished - Jun 2022

Keywords

  • GAM
  • high-throughput plant phenotyping
  • machine learning
  • Miscanthus
  • moisture content
  • multispectral
  • remote sensing
  • senescence
  • transferability
  • UAV

Fingerprint

Dive into the research topics of 'Moisture content estimation and senescence phenotyping of novel Miscanthus hybrids combining UAV-based remote sensing and machine learning'. Together they form a unique fingerprint.

Cite this