Modelling the seasonal dynamics of Aedesalbopictus populations using a spatio-temporal stacked machine learning model

Daniele Da Re*, Giovanni Marini, Carmelo Bonannella, Fabrizio Laurini, Mattia Manica, Nikoleta Anicic, Alessandro Albieri, Paola Angelini, Daniele Arnoldi, Federica Bertola, Beniamino Caputo, Claudio De Liberato, Alessandra della Torre, Eleonora Flacio, Alessandra Franceschini, Francesco Gradoni, Përparim Kadriaj, Valeria Lencioni, Irene Del Lesto, Francesco La RussaRiccardo Paolo Lia, Fabrizio Montarsi, Domenico Otranto, Gregory L’Ambert, Annapaola Rizzoli, Pasquale Rombolà, Federico Romiti, Gionata Stancher, Alessandra Torina, Enkelejda Velo, Chiara Virgillito, Fabiana Zandonai, Roberto Rosà

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Fingerprint

Dive into the research topics of 'Modelling the seasonal dynamics of Aedesalbopictus populations using a spatio-temporal stacked machine learning model'. Together they form a unique fingerprint.

Earth and Planetary Sciences