Modelling the seasonal dynamics of Aedesalbopictus populations using a spatio-temporal stacked machine learning model

Daniele Da Re*, Giovanni Marini, Carmelo Bonannella, Fabrizio Laurini, Mattia Manica, Nikoleta Anicic, Alessandro Albieri, Paola Angelini, Daniele Arnoldi, Federica Bertola, Beniamino Caputo, Claudio De Liberato, Alessandra della Torre, Eleonora Flacio, Alessandra Franceschini, Francesco Gradoni, Përparim Kadriaj, Valeria Lencioni, Irene Del Lesto, Francesco La RussaRiccardo Paolo Lia, Fabrizio Montarsi, Domenico Otranto, Gregory L’Ambert, Annapaola Rizzoli, Pasquale Rombolà, Federico Romiti, Gionata Stancher, Alessandra Torina, Enkelejda Velo, Chiara Virgillito, Fabiana Zandonai, Roberto Rosà

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Various modelling techniques are available to understand the temporal and spatial variations of the phenology of species. Scientists often rely on correlative models, which establish a statistical relationship between a response variable (such as species abundance or presence-absence) and a set of predominantly abiotic covariates. The choice of the modeling approach, i.e., the algorithm, is itself a significant source of variability, as different algorithms applied to the same dataset can yield disparate outcomes. This inter-model variability has led to the adoption of ensemble modelling techniques, among which stacked generalisation, which has recently demonstrated its capacity to produce robust results. Stacked ensemble modelling incorporates predictions from multiple base learners or models as inputs for a meta-learner. The meta-learner, in turn, assimilates these predictions and generates a final prediction by combining the information from all the base learners. In our study, we utilized a recently published dataset documenting egg abundance observations of Aedesalbopictus collected using ovitraps. and a set of environmental predictors to forecast the weekly median number of mosquito eggs using a stacked machine learning model. This approach enabled us to (i) unearth the seasonal egg-laying dynamics of Ae.albopictus for 12 years; (ii) generate spatio-temporal explicit forecasts of mosquito egg abundance in regions not covered by conventional monitoring initiatives. Our work establishes a robust methodological foundation for forecasting the spatio-temporal abundance of Ae.albopictus, offering a flexible framework that can be tailored to meet specific public health needs related to this species.

Original languageEnglish
Article number3750
Number of pages12
JournalScientific Reports
Volume15
DOIs
Publication statusPublished - 2025

Keywords

  • Arthropod
  • Forecast
  • Invasive species
  • Mosquito
  • Population dynamics
  • Time-series

Fingerprint

Dive into the research topics of 'Modelling the seasonal dynamics of Aedesalbopictus populations using a spatio-temporal stacked machine learning model'. Together they form a unique fingerprint.

Cite this