Modeling the Evolution of the Atmospheric Boundary Layer Coupled to the Land Surface for Three Contrasting Nights in CASES-99

G.J. Steeneveld, B.J.H. van de Wiel, A.A.M. Holtslag

Research output: Contribution to journalArticleAcademicpeer-review

100 Citations (Scopus)


The modeling and prediction of the stable boundary layer over land is a persistent, problematic feature in weather. climate, and air quality topics. Here, the performance of a state-of-the-art single-column boundary layer model is evaluated with observations from the 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99) field experiment. Very high model resolution in the atmosphere and the soil is utilized to represent three different stable boundary layer archetypes, namely, a fully turbulent night, an intermittently turbulent night, and a radiative night with hardly any turbulence (all at clear skies). Each archetype represents a different class of atmospheric stability. In the current model, the atmosphere is fully coupled to a vegetation layer and the underlying soil. In addition, stability functions (local scaling) are utilized based on in situ observations. Overall it is found that the vertical structure, the surface fluxes (apart from the intermittent character) and the surface temperature in the stable boundary layer can be satisfactorily modeled for a broad stability range (at a local scale) with the current understanding of the physics of the stable boundary layer. This can also be achieved by the use of a rather detailed coupling between the atmosphere and the underlying soil and vegetation, together with high resolution in both the atmosphere and the soil. This is especially true for the very stable nights, when longwave radiative cooling is dominant. Both model outcome and observations show that in the latter case the soil heat flux is a dominant term of the surface energy budget.
Original languageEnglish
Pages (from-to)920-935
Number of pages16
JournalJournal of the Atmospheric Sciences
Publication statusPublished - 2006


  • monin-obukhov similarity
  • weak wind conditions
  • salt-lake valley
  • intermittent turbulence
  • stable conditions
  • convective conditions
  • energy balance
  • part ii
  • flux
  • temperature


Dive into the research topics of 'Modeling the Evolution of the Atmospheric Boundary Layer Coupled to the Land Surface for Three Contrasting Nights in CASES-99'. Together they form a unique fingerprint.

Cite this