Modeling Quantitative Value of Habitats for Marine and Estuarine Populations

Romuald N. Lipcius*, David B. Eggleston, F.J. Fodrie, Jaap Van Der Meer, Kenneth A. Rose, Rita P. Vasconcelos, Karen E. Van De Wolfshaar

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

Coastal habitats (e.g., seagrass beds, shallow mud, and sand flats) strongly influence survival, growth, and reproduction of marine fish and invertebrate species. Many of these species have declined over the past decades, coincident with widespread degradation of coastal habitats, such that an urgent need exists to model the quantitative value of coastal habitats to their population dynamics. For exploited species, demand for habitat considerations will increase as fisheries management contends with habitat issues in stock assessments andmanagement in generalmoves toward amore ecosystem-based approach. The modeling of habitat function has, to date, been done on a case-by-case
basis involving diverse approaches and types of population models, which has made it difficult to generalize about methods for incorporating habitat into population models. In this review, we offer guiding concepts for how habitat effects can be incorporated in population models commonly used to simulate the population dynamics of fish and invertebrate species. Many marine species share a similar life-history strategy as long-lived adults with indeterminate growth, high fecundity, a planktonic larval form, and benthic juveniles and adults using coastal habitats. This suite of life-history traits unites the marine species across the case studies, such that the population models can be adapted for other marine species. We categorize population models based on whether they are static or dynamic representations of population status, and for dynamic,
further into unstructured, age/size class structured, and individual-based. We then use examples, with an emphasis on exploited species, to illustrate how habitat has been incorporated, implicitly (correlative) and explicitly(mechanistically), into each of these categories. We describe the methods used and provide details on their implementation and utility to facilitate adaptation of the approaches for other species and systems. We anticipate that our review can serve as a stimulus for more widespread use of population models to quantify the value of coastal habitats, so that their importance can be accurately realized and to facilitate cross-species and cross-system comparisons. Quantitative evaluation of habitat effects in population dynamics will increasingly be needed for traditional stock assessments, ecosystem-based management, conservation
of at-risk habitats, and recovery of overexploited stocks that rely on critical coastal habitats during their life cycle.
Original languageEnglish
Article number280
Number of pages22
JournalFrontiers in Marine Science
Volume6
DOIs
Publication statusPublished - 2019

Keywords

  • dynamic energy budget model
  • habitat value
  • individual based model
  • integral projection model
  • matrix model
  • nursery model
  • population dynamics
  • population model

Fingerprint Dive into the research topics of 'Modeling Quantitative Value of Habitats for Marine and Estuarine Populations'. Together they form a unique fingerprint.

  • Cite this