Modeling Host-Pathogen Interaction to Elucidate the Metabolic Drug Response of Intracellular Mycobacterium tuberculosis

Rienk A. Rienksma, Peter J. Schaap, Vitor A.P. Martins Dos Santos, Maria Suarez-Diez*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

18 Citations (Scopus)


Little is known about the metabolic state of Mycobacterium tuberculosis (Mtb) inside the phagosome, a compartment inside phagocytes for killing pathogens and other foreign substances. We have developed a combined model of Mtb and human metabolism, sMtb-RECON and used this model to predict the metabolic state of Mtb during infection of the host. Amino acids are predicted to be used for energy production as well as biomass formation. Subsequently we assessed the effect of increasing dosages of drugs targeting metabolism on the metabolic state of the pathogen and predict resulting metabolic adaptations and flux rerouting through various pathways. In particular, the TCA cycle becomes more important upon drug application, as well as alanine, aspartate, glutamate, proline, arginine and porphyrin metabolism, while glycine, serine, and threonine metabolism become less important. We modeled the effect of 11 metabolically active drugs. Notably, the effect of eight could be recreated and two major profiles of the metabolic state were predicted. The profiles of the metabolic states of Mtb affected by the drugs BTZ043, cycloserine and its derivative terizidone, ethambutol, ethionamide, propionamide, and isoniazid were very similar, while TMC207 is predicted to have quite a different effect on metabolism as it inhibits ATP synthase and therefore indirectly interferes with a multitude of metabolic pathways.

Original languageEnglish
Number of pages1
JournalFrontiers in Cellular and Infection Microbiology
Publication statusPublished - 8 May 2019


  • antibiotics
  • drug response
  • flux balance analysis
  • host-pathogen interaction
  • metabolic model
  • Mycobacterium tuberculosis


Dive into the research topics of 'Modeling Host-Pathogen Interaction to Elucidate the Metabolic Drug Response of Intracellular Mycobacterium tuberculosis'. Together they form a unique fingerprint.

Cite this