TY - JOUR
T1 - Modeled dietary impact of pizza reformulations in US children and adolescents
AU - Masset, Gabriel
AU - Mathias, Kevin C.
AU - Vlassopoulos, Antonis
AU - Molenberg, Famke
AU - Lehmann, Undine
AU - Gibney, Mike
AU - Drewnowski, Adam
PY - 2016
Y1 - 2016
N2 - Background and Objective Approximately 20% of US children and adolescents consume pizza on any given day; and pizza intake is associated with higher intakes of energy, sodium, and saturated fat. The reformulation of pizza products has yet to be evaluated as a viable option to improve diets of the US youth. This study modeled the effect on nutrient intakes of two potential pizza reformulation strategies based on the standards established by the Nestlé Nutritional Profiling System (NNPS). Methods Dietary intakes were retrieved from the first 24hr-recall of the National Health and Nutrition Examination Survey (NHANES) 2011-12, for 2655 participants aged 4-19 years. The composition of pizzas in the NHANES food database (n = 69) were compared against the NNPS standards for energy, total fat, saturated fat, sodium, added sugars, and protein. In a reformulation scenario, the nutrient content of pizzas was adjusted to the NNPS standards if these were not met. In a substitution scenario, pizzas that did not meet the standards were replaced by the closest pizza, based on nutrient content, that met all of the NNPS standards. Results Pizzas consistent with all the NNPS standards (29% of all pizzas) were significantly lower in energy, saturated fat and sodium than pizzas that were not. Among pizza consumers, modeled intakes in the reformulation and substitution scenarios were lower in energy (-14 and -45kcal, respectively), saturated fat (-1.2 and -2.7g), and sodium (-143 and -153mg) compared to baseline. Conclusions Potential industry wide reformulation of a single food category or intra-category food substitutions may positively impact dietary intakes of US children and adolescents. Further promotion and support of these complimentary strategies may facilitate the adoption and implementation of reformulation standards.
AB - Background and Objective Approximately 20% of US children and adolescents consume pizza on any given day; and pizza intake is associated with higher intakes of energy, sodium, and saturated fat. The reformulation of pizza products has yet to be evaluated as a viable option to improve diets of the US youth. This study modeled the effect on nutrient intakes of two potential pizza reformulation strategies based on the standards established by the Nestlé Nutritional Profiling System (NNPS). Methods Dietary intakes were retrieved from the first 24hr-recall of the National Health and Nutrition Examination Survey (NHANES) 2011-12, for 2655 participants aged 4-19 years. The composition of pizzas in the NHANES food database (n = 69) were compared against the NNPS standards for energy, total fat, saturated fat, sodium, added sugars, and protein. In a reformulation scenario, the nutrient content of pizzas was adjusted to the NNPS standards if these were not met. In a substitution scenario, pizzas that did not meet the standards were replaced by the closest pizza, based on nutrient content, that met all of the NNPS standards. Results Pizzas consistent with all the NNPS standards (29% of all pizzas) were significantly lower in energy, saturated fat and sodium than pizzas that were not. Among pizza consumers, modeled intakes in the reformulation and substitution scenarios were lower in energy (-14 and -45kcal, respectively), saturated fat (-1.2 and -2.7g), and sodium (-143 and -153mg) compared to baseline. Conclusions Potential industry wide reformulation of a single food category or intra-category food substitutions may positively impact dietary intakes of US children and adolescents. Further promotion and support of these complimentary strategies may facilitate the adoption and implementation of reformulation standards.
U2 - 10.1371/journal.pone.0164197
DO - 10.1371/journal.pone.0164197
M3 - Article
AN - SCOPUS:84991067555
SN - 1932-6203
VL - 11
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e0164197
ER -