Model-driven design allows growth of Mycoplasma pneumoniae on serum-free media

Erika Gaspari*, Antoni Malachowski, Luis Garcia-Morales, Raul Burgos, Luis Serrano, Vitor A.P. Martins dos Santos, Maria Suarez-Diez

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Mycoplasma pneumoniae is a slow-growing, human pathogen that causes atypical pneumonia. Because it lacks a cell wall, many antibiotics are ineffective. Due to its reduced genome and dearth of many biosynthetic pathways, this fastidious bacterium depends on rich, undefined medium for growth, which makes large-scale cultivation challenging and expensive. To understand factors limiting growth, we developed a genome-scale, constraint-based model of M. pneumoniae called iEG158_mpn to describe the metabolic potential of this bacterium. We have put special emphasis on cell membrane formation to identify key lipid components to maximize bacterial growth. We have used this knowledge to predict essential components validated with in vitro serum-free media able to sustain growth. Our findings also show that glycolysis and lipid metabolism are much less efficient under hypoxia; these findings suggest that factors other than metabolism and membrane formation alone affect the growth of M. pneumoniae. Altogether, our modelling approach allowed us to optimize medium composition, enabled growth in defined media and streamlined operational requirements, thereby providing the basis for stable, reproducible and less expensive production.

Original languageEnglish
Article number33
Journalnpj Systems Biology and Applications
Volume6
DOIs
Publication statusPublished - 23 Oct 2020

Fingerprint Dive into the research topics of 'Model-driven design allows growth of Mycoplasma pneumoniae on serum-free media'. Together they form a unique fingerprint.

Cite this