Methanol conversion in high-rate anaerobic reactors

Research output: Contribution to journalArticleAcademicpeer-review

43 Citations (Scopus)

Abstract

An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens interact cooperatively or competitively at substrate level. This interaction has large technological implications as it determines the final product of methanol mineralization, methane or carbon dioxide. The degradation route of methanol may be entirely different when environmental conditions change. Direct methanogenesis from methanol seems the predominant mineralization route under mesophilic conditions both in the absence and the presence of sulfate. Under thermophilic conditions methanol oxidation to carbon dioxide and hydrogen appears to play an important role. The UASB technology for mesophilic digestion of methanolic waste has presently reached full-scale maturity. The potential of methanol as feedstock for anaerobic processes is discussed.
Original languageEnglish
Pages (from-to)7-14
JournalWater Science and Technology
Volume44
Issue number8
DOIs
Publication statusPublished - 2001

Fingerprint Dive into the research topics of 'Methanol conversion in high-rate anaerobic reactors'. Together they form a unique fingerprint.

Cite this