Abstract
Climate change has been widely recognized as a key factor driving changes in species distributions. In this study we use a metapopulation model, with a window of suitable climate moving polewards, to explore population shifts and survival of woodland birds under different climate change scenarios and landscape configurations. Extinction vulnerability and expansion ability are predicted for the middle spotted woodpecker Dendrocopus medius and two alternative r-K strategies under west European climate change scenarios of 1, 2 and 4°C temperature increase per century, corresponding to isotemperature velocities of ca 2, 4 and 8 km yr-1. The simulated northward expansion of the bird's distribution is typically in the range of only 0–3 km yr-1, in spite of 10–20 times larger maximum dispersal distances. This is too slow to track the climate change-driven range contraction of 4 or 8 km yr-1 in the south resulting in metapopulation extinction. Especially K-selected (large-bodied) species are vulnerable in the simulations. With a temperature increase of 4°C per century bird species go extinct within 104–178 yr. We present a simple approximation formula to predict the mean time to metapopulation extinction using 1) the rate of climate change, which determines the speed of range contraction in the south, 2) the size of the distribution range, which serves as a buffer against extinction, and 3) the northward expansion velocity, determined by species traits and landscape properties. Finally, our results indicate that the northward expansion rate is not constant. It will be initially lagged suggesting that recently observed expansion rates might be underestimations of future northward expansion rates
Original language | English |
---|---|
Pages (from-to) | 909-919 |
Journal | Ecography |
Volume | 34 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- woodpecker dendrocopos-medius
- habitat fragmentation
- range expansion
- landscape structure
- extinction risk
- change impacts
- distributions
- population
- dispersal
- scale