TY - JOUR
T1 - Mechanical properties affect detectability of perceived texture contrast in heterogeneous food gels
AU - Santagiuliana, Marco
AU - Piqueras-Fiszman, Betina
AU - van der Linden, Erik
AU - Stieger, Markus
AU - Scholten, Elke
PY - 2018/7/1
Y1 - 2018/7/1
N2 - This study investigated the influence of mechanical and physicochemical properties of semi-solid model foods on the detection and temporal perception of texture contrast. Gel-based model foods consisting of two layers were used to systematically vary mechanical contrast and physicochemical properties within bi-layer gels. Fracture stress (σF) and strain (εF) were modified by changing the concentration of various gelling agents (agar, к-carrageenan, and gelatine). The physicochemical properties of gels varied with respect to syneresis and melting behaviour depending on the type of gelling agent. The detection limit of perceived texture contrast of bi-layer gels was determined using ranking tests. Subjects ranked gels in order of increasing perceived heterogeneity as a measure of texture contrast. The detection limit of texture contrast varied between brittle and elastic gels and between soft (low σF) and hard (high σF) gels. In soft and brittle agar gels, heterogeneity was perceived already when the difference in fracture stress between layers was small (ΔσF ≥5 kPa). In soft and elastic gels (к-carrageenan, gelatine) and hard gels, heterogeneity was perceived only when the difference in fracture stress between the layers was large (ΔσF ≥12 kPa). The perceived heterogeneity intensity over time was investigated by time-intensity profiling. During mastication, gelatine gels were perceived for a longer period of time with a higher heterogeneity intensity than agar and к-carrageenan gels. We conclude that mainly mechanical properties of gels impact detectability of mechanical contrast as perceived texture contrast (heterogeneity), whereas a combination of mechanical and physicochemical properties influence the dynamic perception of heterogeneity over time.
AB - This study investigated the influence of mechanical and physicochemical properties of semi-solid model foods on the detection and temporal perception of texture contrast. Gel-based model foods consisting of two layers were used to systematically vary mechanical contrast and physicochemical properties within bi-layer gels. Fracture stress (σF) and strain (εF) were modified by changing the concentration of various gelling agents (agar, к-carrageenan, and gelatine). The physicochemical properties of gels varied with respect to syneresis and melting behaviour depending on the type of gelling agent. The detection limit of perceived texture contrast of bi-layer gels was determined using ranking tests. Subjects ranked gels in order of increasing perceived heterogeneity as a measure of texture contrast. The detection limit of texture contrast varied between brittle and elastic gels and between soft (low σF) and hard (high σF) gels. In soft and brittle agar gels, heterogeneity was perceived already when the difference in fracture stress between layers was small (ΔσF ≥5 kPa). In soft and elastic gels (к-carrageenan, gelatine) and hard gels, heterogeneity was perceived only when the difference in fracture stress between the layers was large (ΔσF ≥12 kPa). The perceived heterogeneity intensity over time was investigated by time-intensity profiling. During mastication, gelatine gels were perceived for a longer period of time with a higher heterogeneity intensity than agar and к-carrageenan gels. We conclude that mainly mechanical properties of gels impact detectability of mechanical contrast as perceived texture contrast (heterogeneity), whereas a combination of mechanical and physicochemical properties influence the dynamic perception of heterogeneity over time.
KW - Agar
KW - Carrageenan
KW - Gelatine
KW - Gels
KW - Texture perception
U2 - 10.1016/j.foodhyd.2018.02.022
DO - 10.1016/j.foodhyd.2018.02.022
M3 - Article
AN - SCOPUS:85044449431
SN - 0268-005X
VL - 80
SP - 254
EP - 263
JO - Food Hydrocolloids
JF - Food Hydrocolloids
ER -