MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity

David Latrasse, Teddy Jégu, Huchen Li, Axel de Zelicourt, Cécile Raynaud, Stéphanie Legras, Andrea Gust, Olga Samajova, Alaguraj Veluchamy, Naganand Rayapuram, Juan Sebastian Ramirez-Prado, Olga Kulikova, Jean Colcombet, Jean Bigeard, Baptiste Genot, Ton Bisseling, Moussa Benhamed, Heribert Hirt*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

32 Citations (Scopus)

Abstract

Background: Microbial-associated molecular patterns activate several MAP kinases, which are major regulators of the innate immune response in Arabidopsis thaliana that induce large-scale changes in gene expression. Here, we determine whether microbial-associated molecular pattern-triggered gene expression involves modifications at the chromatin level. Results: Histone acetylation and deacetylation are major regulators of microbial-associated molecular pattern-triggered gene expression and implicate the histone deacetylase HD2B in the reprogramming of defence gene expression and innate immunity. The MAP kinase MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase. Conclusions: By studying a number of gene loci that undergo microbial-associated molecular pattern-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense.

Original languageEnglish
Article number131
JournalGenome Biology
Volume18
Issue number1
DOIs
Publication statusPublished - 2017

Fingerprint Dive into the research topics of 'MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity'. Together they form a unique fingerprint.

Cite this