Abstract
Traditional hot air drying of asparagus is known to lead to a powder with a poor aroma profile. We here concentrated asparagus juice into asparagus concentrate (21.7% w/w) and spray-dried it with maltodextrin DE12 as carrier agent to improve the volatile profiles of asparagus powder and to valorise fresh asparagus sidestreams.
We performed headspace GC-MS with untargeted metabolomics to assess the overall metabolite profile of the spray-dried asparagus powders and identified 70 volatile compounds. The maltodextrin content was positively correlated to the retention of an asparagus key odorant 1-octen-3-ol, as well as other alcohols and aldehydes. Nevertheless, drying conditions had limited effect on the volatile retention of the powders. Moreover, higher outlet temperatures increase the presence of volatiles that were formed during drying, such as 3-methylthio-
propanal. From our analyses, it was further found that an increased concentration of maltodextrin was correlated to a lower moisture content, a higher glass transition temperature (Tg) and a narrower size distribution of the spray-dried powders. The Tg of all powders was described with the Gordon-Taylor equation for multicomponent mixtures, and we found a minimum weight fraction of 0.67 (w/dw) maltodextrin required to obtain glassy asparagus powder for storing at ambient conditions.
We performed headspace GC-MS with untargeted metabolomics to assess the overall metabolite profile of the spray-dried asparagus powders and identified 70 volatile compounds. The maltodextrin content was positively correlated to the retention of an asparagus key odorant 1-octen-3-ol, as well as other alcohols and aldehydes. Nevertheless, drying conditions had limited effect on the volatile retention of the powders. Moreover, higher outlet temperatures increase the presence of volatiles that were formed during drying, such as 3-methylthio-
propanal. From our analyses, it was further found that an increased concentration of maltodextrin was correlated to a lower moisture content, a higher glass transition temperature (Tg) and a narrower size distribution of the spray-dried powders. The Tg of all powders was described with the Gordon-Taylor equation for multicomponent mixtures, and we found a minimum weight fraction of 0.67 (w/dw) maltodextrin required to obtain glassy asparagus powder for storing at ambient conditions.
Original language | English |
---|---|
Pages (from-to) | 1-10 |
Journal | Food Science and Technology = Lebensmittel-Wissenschaft und Technologie |
Volume | 142 |
DOIs | |
Publication status | Published - May 2021 |
Keywords
- Aroma encapsulation
- Asparagus
- GC-MS
- Maltodextrin
- Spray drying