TY - JOUR
T1 - Maintenance of metabolic homeostasis and induction of cytoprotectants and secondary metabolites in alachlor-treated GmGSTU4-overexpressing tobacco plants, as resolved by metabolomics
AU - Kissoudis, Christos
AU - Kalloniati, Chrysanthi
AU - Flemetakis, Emmanouil
AU - Madesis, Panagiotis
AU - Labrou, N.E.
AU - Tsaftaris, Athanasios
AU - Nianiou-Obeidat, Irini
PY - 2015
Y1 - 2015
N2 - Herbicides are an invaluable tool for agricultural production scaling up. However, their continuous and intensive use has led to an increased incidence of herbicide resistant weeds and environmental pollution. Plant glutathione transferases (GSTs) are tightly connected with crop and weed herbicide tolerance capacitating their efficient metabolic detoxification, thus GSTs can be biotechnologically exploited towards addressing those issues. However, information on their effects at a “systems” level in response to herbicides is lacking. Here, we aimed to study the effects of the chloroacetanilide herbicide alachlor on the metabolome of wild-type and tobacco plants overexpressing the soybean tau class glutathione transferase GmGSTU4. Alachlor-treated wild-type plants This system, naturally serving the detoxification of endogenous exhibited an abiotic stress-like response with increased abundance of compatible solutes, decrease in TCA cycle intermediates and decreased sugar and amino acid content. Transgenic plants responded distinctly, exhibiting an increased induction of abiotic stress responsive metabolites, accumulation of secondary metabolites and its precursors, and metabolic detoxification by-products compared to wild-type plants. These results suggest that the increased metabolic capacity of GmGSTU4 overexpressing plants is accompanied by pleiotropic metabolic alterations, which could be the target for further manipulation in order to develop herbicide resistant crops, plants with increased phytoremediation potential, as well as efficient management of non-target site, GST induced, herbicide resistance in weeds.
AB - Herbicides are an invaluable tool for agricultural production scaling up. However, their continuous and intensive use has led to an increased incidence of herbicide resistant weeds and environmental pollution. Plant glutathione transferases (GSTs) are tightly connected with crop and weed herbicide tolerance capacitating their efficient metabolic detoxification, thus GSTs can be biotechnologically exploited towards addressing those issues. However, information on their effects at a “systems” level in response to herbicides is lacking. Here, we aimed to study the effects of the chloroacetanilide herbicide alachlor on the metabolome of wild-type and tobacco plants overexpressing the soybean tau class glutathione transferase GmGSTU4. Alachlor-treated wild-type plants This system, naturally serving the detoxification of endogenous exhibited an abiotic stress-like response with increased abundance of compatible solutes, decrease in TCA cycle intermediates and decreased sugar and amino acid content. Transgenic plants responded distinctly, exhibiting an increased induction of abiotic stress responsive metabolites, accumulation of secondary metabolites and its precursors, and metabolic detoxification by-products compared to wild-type plants. These results suggest that the increased metabolic capacity of GmGSTU4 overexpressing plants is accompanied by pleiotropic metabolic alterations, which could be the target for further manipulation in order to develop herbicide resistant crops, plants with increased phytoremediation potential, as well as efficient management of non-target site, GST induced, herbicide resistance in weeds.
KW - Abiotic stress
KW - Glutathione
KW - Herbicide resistance
KW - Non-target site resistance
KW - Phytoremediation
KW - Secondary metabolism
U2 - 10.1007/s11816-015-0364-5
DO - 10.1007/s11816-015-0364-5
M3 - Article
AN - SCOPUS:84942369969
SN - 1863-5474
VL - 9
SP - 287
EP - 296
JO - Plant Biotechnology Reports
JF - Plant Biotechnology Reports
IS - 5
ER -