Lubrication and perception of foods

tribological, rheological and sensory properties of particle-filled food system

K. Liu

Research output: Thesisinternal PhD, WU

Abstract

Background and aims

Food structure is determined by its composition and the interaction between the compositional or structural elements. Both food structure and the texture perception of foods undergo dynamic changes during different phases of oral processing. During oral processing, both rheological and tribological properties of foods are relevant for sensory perception. The general aim of this thesis was to understand the relationship between the structural properties, rheological and tribological properties during food breakdown, and the sensory perception of foods. More specifically, this thesis aimed to link the properties of food particles in liquid and semi-solid matrices to the tribological and rheological properties, and in this way, understand the sensory perception of these systems.

Methods

Fat droplets and micro-particle fat replacers based on protein and starch were investigated. These particles varied in size, morphology, deformability and stability, as well as their interaction with the surrounding matrix. These particles were dispersed in liquid or semi-solid gel phases, forming the food model systems under consideration. The friction and microstructural evolution of food model systems under shear was determined using a mouth-mimicking tribometer connected to a confocal laser scanning microscopy. The viscosities of liquid systems were analyzed using a rheometer, and the large deformation properties of semi-solid gel systems were determined during uniaxial compression tests. The sensory perception of the food model systems were measured using quantitative descriptive analysis. The release and deposition of fat droplets on the tongue were determined using in vivo fluorescence.

Results

Food structural elements could be manipulated to control the tribological properties of food model systems. Morphology, size, and deformability of food particles determine the lubrication behavior of the food systems. Spherical particles with micrometer size were able to reduce friction through a ball bearing mechanism, while irregularly shaped particles increased friction by increasing apparent surface asperity contacts. Deformable particles could flatten the surface by filling asperities, thus reduced friction. Coalescence of unstable droplets could plate-out on the surface and form film patches, thus reduced friction. Other structural elements, such as emulsifiers and sticky molecules, also influenced tribological properties of the systems. Interactions between the food structural elements could influence the rheological properties of liquid and semi-solid food systems. These properties as well as tribological properties were inter-related and all of them affect sensory perception. The inter-relations between physical and sensory properties of food systems were influenced by oral processing, such as oral processing duration and temperature. Furthermore, several fat reduction and replacement strategies were suggested, including increasing the availability of fat that is in contact with oral surfaces, improving the lubrication by ball bearing of particles, and reducing perception of negative attributes such as roughness.

Conclusions

This thesis showed the importance of food particle properties in both the tribological properties and sensory perception of foods, and emphasized the different lubrication mechanisms of different structure elements and their relation to perception. The differences in behavior of food particles between liquid and semi-solid gel systems were highlighted. These findings would enable a better understanding of relationship between food structure and their physical and sensory properties, and this would allow designing or modifying food products with targeted texture and sensory perception.

Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Wageningen University
Supervisors/Advisors
  • van der Linden, Erik, Promotor
  • Stieger, Markus, Co-promotor
  • van de Velde, Fred, Co-promotor, External person
Award date15 Apr 2016
Place of PublicationWageningen
Publisher
Print ISBNs9789462576803
Publication statusPublished - 2016

Fingerprint

Lubrication
Fats
Friction
Ball bearings
Gels
Liquids
Formability
Processing
Textures
Viscosity of liquids
Microstructural evolution
Rheometers
Chemical analysis
Coalescence

Keywords

  • rheological properties
  • tribology
  • fat globules
  • particles
  • lubrication
  • sensory evaluation
  • simulation models
  • food
  • gels
  • rice

Cite this

@phdthesis{882e73d1ef694d6ab6a6cc4b34b06308,
title = "Lubrication and perception of foods: tribological, rheological and sensory properties of particle-filled food system",
abstract = "Background and aims Food structure is determined by its composition and the interaction between the compositional or structural elements. Both food structure and the texture perception of foods undergo dynamic changes during different phases of oral processing. During oral processing, both rheological and tribological properties of foods are relevant for sensory perception. The general aim of this thesis was to understand the relationship between the structural properties, rheological and tribological properties during food breakdown, and the sensory perception of foods. More specifically, this thesis aimed to link the properties of food particles in liquid and semi-solid matrices to the tribological and rheological properties, and in this way, understand the sensory perception of these systems. Methods Fat droplets and micro-particle fat replacers based on protein and starch were investigated. These particles varied in size, morphology, deformability and stability, as well as their interaction with the surrounding matrix. These particles were dispersed in liquid or semi-solid gel phases, forming the food model systems under consideration. The friction and microstructural evolution of food model systems under shear was determined using a mouth-mimicking tribometer connected to a confocal laser scanning microscopy. The viscosities of liquid systems were analyzed using a rheometer, and the large deformation properties of semi-solid gel systems were determined during uniaxial compression tests. The sensory perception of the food model systems were measured using quantitative descriptive analysis. The release and deposition of fat droplets on the tongue were determined using in vivo fluorescence. Results Food structural elements could be manipulated to control the tribological properties of food model systems. Morphology, size, and deformability of food particles determine the lubrication behavior of the food systems. Spherical particles with micrometer size were able to reduce friction through a ball bearing mechanism, while irregularly shaped particles increased friction by increasing apparent surface asperity contacts. Deformable particles could flatten the surface by filling asperities, thus reduced friction. Coalescence of unstable droplets could plate-out on the surface and form film patches, thus reduced friction. Other structural elements, such as emulsifiers and sticky molecules, also influenced tribological properties of the systems. Interactions between the food structural elements could influence the rheological properties of liquid and semi-solid food systems. These properties as well as tribological properties were inter-related and all of them affect sensory perception. The inter-relations between physical and sensory properties of food systems were influenced by oral processing, such as oral processing duration and temperature. Furthermore, several fat reduction and replacement strategies were suggested, including increasing the availability of fat that is in contact with oral surfaces, improving the lubrication by ball bearing of particles, and reducing perception of negative attributes such as roughness. Conclusions This thesis showed the importance of food particle properties in both the tribological properties and sensory perception of foods, and emphasized the different lubrication mechanisms of different structure elements and their relation to perception. The differences in behavior of food particles between liquid and semi-solid gel systems were highlighted. These findings would enable a better understanding of relationship between food structure and their physical and sensory properties, and this would allow designing or modifying food products with targeted texture and sensory perception.",
keywords = "rheological properties, tribology, fat globules, particles, lubrication, sensory evaluation, simulation models, food, gels, rice, reologische eigenschappen, tribologie, vetbolletjes, deeltjes, smering, sensorische evaluatie, simulatiemodellen, voedsel, gels, rijst",
author = "K. Liu",
note = "WU thesis 6323",
year = "2016",
language = "English",
isbn = "9789462576803",
publisher = "Wageningen University",
school = "Wageningen University",

}

Lubrication and perception of foods : tribological, rheological and sensory properties of particle-filled food system. / Liu, K.

Wageningen : Wageningen University, 2016. 236 p.

Research output: Thesisinternal PhD, WU

TY - THES

T1 - Lubrication and perception of foods

T2 - tribological, rheological and sensory properties of particle-filled food system

AU - Liu, K.

N1 - WU thesis 6323

PY - 2016

Y1 - 2016

N2 - Background and aims Food structure is determined by its composition and the interaction between the compositional or structural elements. Both food structure and the texture perception of foods undergo dynamic changes during different phases of oral processing. During oral processing, both rheological and tribological properties of foods are relevant for sensory perception. The general aim of this thesis was to understand the relationship between the structural properties, rheological and tribological properties during food breakdown, and the sensory perception of foods. More specifically, this thesis aimed to link the properties of food particles in liquid and semi-solid matrices to the tribological and rheological properties, and in this way, understand the sensory perception of these systems. Methods Fat droplets and micro-particle fat replacers based on protein and starch were investigated. These particles varied in size, morphology, deformability and stability, as well as their interaction with the surrounding matrix. These particles were dispersed in liquid or semi-solid gel phases, forming the food model systems under consideration. The friction and microstructural evolution of food model systems under shear was determined using a mouth-mimicking tribometer connected to a confocal laser scanning microscopy. The viscosities of liquid systems were analyzed using a rheometer, and the large deformation properties of semi-solid gel systems were determined during uniaxial compression tests. The sensory perception of the food model systems were measured using quantitative descriptive analysis. The release and deposition of fat droplets on the tongue were determined using in vivo fluorescence. Results Food structural elements could be manipulated to control the tribological properties of food model systems. Morphology, size, and deformability of food particles determine the lubrication behavior of the food systems. Spherical particles with micrometer size were able to reduce friction through a ball bearing mechanism, while irregularly shaped particles increased friction by increasing apparent surface asperity contacts. Deformable particles could flatten the surface by filling asperities, thus reduced friction. Coalescence of unstable droplets could plate-out on the surface and form film patches, thus reduced friction. Other structural elements, such as emulsifiers and sticky molecules, also influenced tribological properties of the systems. Interactions between the food structural elements could influence the rheological properties of liquid and semi-solid food systems. These properties as well as tribological properties were inter-related and all of them affect sensory perception. The inter-relations between physical and sensory properties of food systems were influenced by oral processing, such as oral processing duration and temperature. Furthermore, several fat reduction and replacement strategies were suggested, including increasing the availability of fat that is in contact with oral surfaces, improving the lubrication by ball bearing of particles, and reducing perception of negative attributes such as roughness. Conclusions This thesis showed the importance of food particle properties in both the tribological properties and sensory perception of foods, and emphasized the different lubrication mechanisms of different structure elements and their relation to perception. The differences in behavior of food particles between liquid and semi-solid gel systems were highlighted. These findings would enable a better understanding of relationship between food structure and their physical and sensory properties, and this would allow designing or modifying food products with targeted texture and sensory perception.

AB - Background and aims Food structure is determined by its composition and the interaction between the compositional or structural elements. Both food structure and the texture perception of foods undergo dynamic changes during different phases of oral processing. During oral processing, both rheological and tribological properties of foods are relevant for sensory perception. The general aim of this thesis was to understand the relationship between the structural properties, rheological and tribological properties during food breakdown, and the sensory perception of foods. More specifically, this thesis aimed to link the properties of food particles in liquid and semi-solid matrices to the tribological and rheological properties, and in this way, understand the sensory perception of these systems. Methods Fat droplets and micro-particle fat replacers based on protein and starch were investigated. These particles varied in size, morphology, deformability and stability, as well as their interaction with the surrounding matrix. These particles were dispersed in liquid or semi-solid gel phases, forming the food model systems under consideration. The friction and microstructural evolution of food model systems under shear was determined using a mouth-mimicking tribometer connected to a confocal laser scanning microscopy. The viscosities of liquid systems were analyzed using a rheometer, and the large deformation properties of semi-solid gel systems were determined during uniaxial compression tests. The sensory perception of the food model systems were measured using quantitative descriptive analysis. The release and deposition of fat droplets on the tongue were determined using in vivo fluorescence. Results Food structural elements could be manipulated to control the tribological properties of food model systems. Morphology, size, and deformability of food particles determine the lubrication behavior of the food systems. Spherical particles with micrometer size were able to reduce friction through a ball bearing mechanism, while irregularly shaped particles increased friction by increasing apparent surface asperity contacts. Deformable particles could flatten the surface by filling asperities, thus reduced friction. Coalescence of unstable droplets could plate-out on the surface and form film patches, thus reduced friction. Other structural elements, such as emulsifiers and sticky molecules, also influenced tribological properties of the systems. Interactions between the food structural elements could influence the rheological properties of liquid and semi-solid food systems. These properties as well as tribological properties were inter-related and all of them affect sensory perception. The inter-relations between physical and sensory properties of food systems were influenced by oral processing, such as oral processing duration and temperature. Furthermore, several fat reduction and replacement strategies were suggested, including increasing the availability of fat that is in contact with oral surfaces, improving the lubrication by ball bearing of particles, and reducing perception of negative attributes such as roughness. Conclusions This thesis showed the importance of food particle properties in both the tribological properties and sensory perception of foods, and emphasized the different lubrication mechanisms of different structure elements and their relation to perception. The differences in behavior of food particles between liquid and semi-solid gel systems were highlighted. These findings would enable a better understanding of relationship between food structure and their physical and sensory properties, and this would allow designing or modifying food products with targeted texture and sensory perception.

KW - rheological properties

KW - tribology

KW - fat globules

KW - particles

KW - lubrication

KW - sensory evaluation

KW - simulation models

KW - food

KW - gels

KW - rice

KW - reologische eigenschappen

KW - tribologie

KW - vetbolletjes

KW - deeltjes

KW - smering

KW - sensorische evaluatie

KW - simulatiemodellen

KW - voedsel

KW - gels

KW - rijst

M3 - internal PhD, WU

SN - 9789462576803

PB - Wageningen University

CY - Wageningen

ER -