TY - JOUR
T1 - Local rainfall forecast knowledge across the globe used for agricultural decision-making
AU - Paparrizos, Spyridon
AU - Attoh, Emmanuel M.N.A.N.
AU - Sutanto, Samuel J.
AU - Snoeren, Nina
AU - Ludwig, Fulco
PY - 2023/11/15
Y1 - 2023/11/15
N2 - The agriculture sector is vital to the world's economy and weather and climate are key drivers that affect the productivity and profitability of agricultural systems. At the same time, weather-related risks pose significant challenges to farmers' livelihoods. Although scientific weather forecast (SFK) is available, many farmers, especially in the Global South, have limited access to this information, and they rely on local forecast knowledge (LFK) to make farming decisions. Many studies also recognize the value of combining both forecasting systems; yet, unlike SFK which is readily available, indicators for LFK needs to be collected first. Therefore, this study identifies and documents the spatial distribution of LFK use for agriculture across the globe through a systematic literature review. Results show that a high number of LFK regions with a total of around 1350 local environmental indicators were found in Africa and Asia and less in South and North America. The low usability of scientific weather forecasts is perceived as the main reason farmers use LFK instead of SFK, yet the accessibility of LFK both for scientists and users, needs to be improved. Indicators based on animals and meteorology appeared to be more frequently used for weather predictions than plant- and astronomy-based indicators. Digitalizing the LFK inventory and collecting more detailed information about the regions where LFK was identified could promote and foster research on integrating scientific and local forecasting systems. This study will draw attention to the importance of LFK in weather forecasting, maintain this knowledge and enhance it.
AB - The agriculture sector is vital to the world's economy and weather and climate are key drivers that affect the productivity and profitability of agricultural systems. At the same time, weather-related risks pose significant challenges to farmers' livelihoods. Although scientific weather forecast (SFK) is available, many farmers, especially in the Global South, have limited access to this information, and they rely on local forecast knowledge (LFK) to make farming decisions. Many studies also recognize the value of combining both forecasting systems; yet, unlike SFK which is readily available, indicators for LFK needs to be collected first. Therefore, this study identifies and documents the spatial distribution of LFK use for agriculture across the globe through a systematic literature review. Results show that a high number of LFK regions with a total of around 1350 local environmental indicators were found in Africa and Asia and less in South and North America. The low usability of scientific weather forecasts is perceived as the main reason farmers use LFK instead of SFK, yet the accessibility of LFK both for scientists and users, needs to be improved. Indicators based on animals and meteorology appeared to be more frequently used for weather predictions than plant- and astronomy-based indicators. Digitalizing the LFK inventory and collecting more detailed information about the regions where LFK was identified could promote and foster research on integrating scientific and local forecasting systems. This study will draw attention to the importance of LFK in weather forecasting, maintain this knowledge and enhance it.
KW - Agriculture
KW - Environmental indicators
KW - Local forecast knowledge
KW - Rainfall forecasts
KW - Small-holder farmers
U2 - 10.1016/j.scitotenv.2023.165539
DO - 10.1016/j.scitotenv.2023.165539
M3 - Article
C2 - 37487896
AN - SCOPUS:85165544943
SN - 0048-9697
VL - 899
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 165539
ER -