TY - JOUR
T1 - Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
AU - Lobos-roco, Felipe
AU - Hartogensis, Oscar
AU - Vilà-guerau De Arellano, Jordi
AU - De La Fuente, Alberto
AU - Muñoz, Ricardo
AU - Rutllant, José
AU - Suárez, Francisco
PY - 2021/6/16
Y1 - 2021/6/16
N2 - We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano (also known as the Andean Plateau) region of the Atacama Desert. For that, we conducted a field experiment in the Salar del Huasco (SDH) basin (135 km east of the Pacific Ocean), in November 2018. The measurements were based on surface energy balance (SEB) stations and airborne observations. Additionally, we simulate the meteorological conditions on a regional scale using the Weather Research and Forecasting Model. Our findings show two evaporation regimes: (1) a morning regime controlled by local conditions, in which SEB is dominated by the ground heat flux (∼0.5 of net radiation), very low evaporation (LvE<30 W m−2) and wind speed <1 m s−1; and (2) an afternoon regime controlled by regional-scale forcing that leads to a sudden increase in wind speed (>15 m s−1) and a jump in evaporation to >500 W m−2. While in the morning evaporation is limited by very low turbulence (u∗∼0.1 m s−1), in the afternoon strong winds (u∗∼0.65 m s−1) enhance mechanical turbulence, increasing evaporation. We find that the strong winds in addition to the locally available radiative energy are the principal drivers of evaporation. These winds are the result of a diurnal cyclic circulation between the Pacific Ocean and the Atacama Desert. Finally, we quantify the advection and entrainment of free-tropospheric air masses driven by boundary layer development. Our research contributes to untangling and linking local- and regional-scale processes driving evaporation across confined saline lakes in arid regions.
AB - We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano (also known as the Andean Plateau) region of the Atacama Desert. For that, we conducted a field experiment in the Salar del Huasco (SDH) basin (135 km east of the Pacific Ocean), in November 2018. The measurements were based on surface energy balance (SEB) stations and airborne observations. Additionally, we simulate the meteorological conditions on a regional scale using the Weather Research and Forecasting Model. Our findings show two evaporation regimes: (1) a morning regime controlled by local conditions, in which SEB is dominated by the ground heat flux (∼0.5 of net radiation), very low evaporation (LvE<30 W m−2) and wind speed <1 m s−1; and (2) an afternoon regime controlled by regional-scale forcing that leads to a sudden increase in wind speed (>15 m s−1) and a jump in evaporation to >500 W m−2. While in the morning evaporation is limited by very low turbulence (u∗∼0.1 m s−1), in the afternoon strong winds (u∗∼0.65 m s−1) enhance mechanical turbulence, increasing evaporation. We find that the strong winds in addition to the locally available radiative energy are the principal drivers of evaporation. These winds are the result of a diurnal cyclic circulation between the Pacific Ocean and the Atacama Desert. Finally, we quantify the advection and entrainment of free-tropospheric air masses driven by boundary layer development. Our research contributes to untangling and linking local- and regional-scale processes driving evaporation across confined saline lakes in arid regions.
U2 - 10.5194/acp-21-9125-2021
DO - 10.5194/acp-21-9125-2021
M3 - Article
SN - 1680-7316
VL - 21
SP - 9125
EP - 9150
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 11
ER -