Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells

Patricia Corral-Martínez, Charlotte Siemons, Anneke Horstman, Gerco C. Angenent, Norbert de Ruijter, Kim Boutilier*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

Key message: In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through 17 different pathways. Abstract: In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the Brassica napus microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of LEAFY COTYLEDON1-expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.

Original languageEnglish
Pages (from-to)143-158
JournalPlant Reproduction
Volume33
Issue number3-4
DOIs
Publication statusPublished - 10 Jul 2020

Keywords

  • Brassica napus
  • LEAFY COTYLEDON1
  • Microspore embryogenesis
  • Suspensor
  • Time-lapse imaging
  • Totipotency

Fingerprint

Dive into the research topics of 'Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells'. Together they form a unique fingerprint.

Cite this