Lipid bilayer topology of the transmembrane alpha-helix of M13 major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy

Research output: Contribution to journalArticleAcademicpeer-review

71 Citations (Scopus)

Abstract

This article presents a new formalism to perform a quantitative fluorescence analysis using the Stokes shift of AEDANS-labeled cysteine mutants of M13 major coat protein incorporated in lipid bilayers. This site-directed fluorescence spectroscopy approach enables us to obtain the topology of the bilayer-embedded transmembrane alpha-helix from the orientation and tilt angles, and relative bilayer location. Both in pure dioleoylphosphatidylcholine and dioleoylphosphatidylcholine/ dioleoylphosphatidylglycerol ( 4: 1 mol/mol) bilayers, which have a similar bilayer thickness, the tilt angle of the transmembrane helix of the coat protein turns out to be 23degrees +/- 4. Upon decreasing the hydrophobic thickness on going from dieicosenoyl-phosphatidylcholine to dimyristoylphosphatidylcholine, the tilt angle and orientation angle of the transmembrane alpha-helix change. The protein responds to an increase of hydrophobic stress by increasing the tilt angle so as to keep much of its hydrophobic part inside the bilayer. At the same time, the transmembrane helix rotates at its long axis so as to optimize the hydrophobic and electrostatic interactions of the C-terminal phenylalanines and lysines, respectively. The increase of tilt angle cannot completely keep the hydrophobic protein section within the bilayer, but the C-terminal part remains anchored at the acylchain/ glycerol backbone interface at the cost of the N-terminal section. In addition, our analysis results in the pro. le of the dielectric constant of the hydrophobic domain of the bilayer. For all phospholipid bilayers studied the pro. le has a concave shape, with a value of the dielectric constant of 4.0 in the center of the bilayer. The dielectric constant increases on approaching the headgroup region with a value of 12.4 at the acyl-chain/glycerol backbone interface for the various phosphatidylcholines with different chain lengths. For dioleoylphosphatidylcholine/ dioleoylphosphatidylglycerol ( 4: 1 mol/mol) bilayers the value of the dielectric constant at the acyl-chain/glycerol backbone interface is 18.6. In conclusion, the consistency of our analysis shows that the applied cysteine-scanning mutagenesis method with AEDANS labeling of a helical transmembrane protein in combination with a quantitative formalism offers a reliable description of the lipid bilayer topology of the protein and bilayer properties. This also indicates that the spacer link between the protein and AEDANS label is long enough to monitor the local polarity of the lipid environment and not that of the amino-acid residues of the protein, and short enough to have the topology of the protein imposing on the fluorescence properties of the AEDANS label.
Original languageEnglish
Pages (from-to)1445-1455
Number of pages11
JournalBiophysical Journal
Volume87
Issue number3
DOIs
Publication statusPublished - 2004

Keywords

  • bacteriophage m13
  • membrane-protein
  • dependence
  • residues
  • peptides
  • domain
  • model

Fingerprint Dive into the research topics of 'Lipid bilayer topology of the transmembrane alpha-helix of M13 major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy'. Together they form a unique fingerprint.

Cite this