Linking patterns of physical and chemical organic matter fractions to its lability in sediments of the tidal Elbe river

F. Zander, R.N.J. Comans, J. Gebert*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Degradability of organic matter in river sediments differs in relation to origin and age. In order to explain previously observed spatial patterns of organic matter degradability and stabilization, this study investigated sediment organic matter (SOM) properties along a tidal Elbe river transect using dissolved organic matter (DOM) fractions, density fractions, carbon stable isotopes and hermometric pyrolysis (Rock-Eval 6©). These properties were linked to SOM decay rates and biological indicators such as chlorophyll a and silicic acid in the water phase, and sediment-bound extracellular polymeric substances (EPS), microbial biomass and oxygen consumption. Sediment source gradients were established using the concentration of Zn in the fraction < 20 μm as proxy. The
specific Zn concentration showed that the most upstream location was
nourished primarily by upstream fluviatile sediments while the other
locations carried a downstream signature. The upstream location was also characterised by the highest concentrations of chlorophyll a, microbial biomass, silicic acid, EPS, humic acids and hydrophilic DOM, the most negative δ13C signature and by the highest oxygen consumption rate, with decreasing
trends towards downstream locations. This trend was also evident in the
decreasing SOM lability from upstream to downstream, an increasing share
of total SOM found in the acid-base-extractable fractions and a decreasing share of carbon in the light density fractions. Thermometric pyrolysis revealed the highest H-index (easily degradable SOM) for the most upstream location and the ratio of the I-index (immature SOM) to the R-index (refractory SOM) to correlate positively with measured SOM decay rates.This study suggests that spatial patterns of SOM degradability can be explained by a source gradient, with young organic matter entering the system from upstream from predominantly biogenic sources, while downstream sources (North Sea sediment) deliver more refractory SOM that is stabilized in organo-mineral associations to a higher extent. In the investigated sediments, dissolved organic matter represented 0.23–1.20% of the total organic carbon (TOC) from anaerobically degradable SOM, while 4.10–11.46% TOC was liberated as CO2 and CH4 after long-term incubation (250 days). Thermometric pyrolysis is shown to serve as a useful proxy for SOM degradability in river sediments, with the Hydrogen-Index (HI) correlating well with degradability and the relationship between the I-index and R-index changing consistently towards lower I-indices and higher R-indices with an increasing degree of SOM stabilization.
Original languageEnglish
Article number105760
JournalApplied Geochemistry
Publication statusPublished - Sept 2023


  • Anaerobic and aerobic degradability
  • Chemical and physical DOM and SOM fractions
  • Sediment organic matter


Dive into the research topics of 'Linking patterns of physical and chemical organic matter fractions to its lability in sediments of the tidal Elbe river'. Together they form a unique fingerprint.

Cite this