Linking monoterpenes and abiotic stress resistance in grapevines

Massimo Bertramini, Maria Stella Grando, Pietro Zocca, M. Pedrotti, Silvia Lorenzi, Luca Cappellin

Research output: Contribution to conferenceConference paper

Abstract

Rising temperatures and ozone levels are among the most striking stressful phenomena of global climate changes, and they threaten plants that are unable to react rapidly and efficiently. Generic responses of plants to stresses include the production of excess reactive oxygen species (ROS). Excessive ROS accumulation can lead to extensive oxidation of important components such as nucleic acids, proteins and lipids which can further exacerbate ROS accumulation leading to programmed cell death. Although most studies on plant antioxidants have focused on non-volatile compounds, volatiles belonging to the isoprenoid family have been implicated in the protection against abiotic stresses, in particular thermal and oxidative stress whose frequency and extent is being exacerbated by ongoing global change and anthropogenic pollution. Historically, research has focused on isoprene, demonstrating that isoprene-emitting plants are more tolerant to ozone exposure and heat stress, reducing ROS accumulation. Yet, evidence is being compiled that shows other volatile isoprenoids may be involved in plant responses against abiotic stresses. Grapevines are not isoprene emitters but some varieties produce other volatile isoprenoids such as monoterpenes. We investigated photosynthesis and emission of volatile organic compounds upon heat stress in two Vitis vinifera cv. ‘Chardonnay’ clones differing only for a mutation in the DXS gene (2-C-methyl-D-erythritol 4-phosphate (MEP) pathway), regulating volatile isoprenoid biosynthesis. We showed that the mutation led to a strong increase in monoterpene emission upon heat stress. At the same time, maximum photochemical quantum yield (Fv/Fm ratio) of PSII was affected by the stress in the non-emitting clone while the monoterpene emitter showed a significant resilience, thus indicating a possible antioxidant role of monoterpenes in grapevine. Future mechanistic studies should focus on unveiling the actual mechanism responsible for such findings.
Original languageEnglish
DOIs
Publication statusPublished - Jul 2018
EventCO.NA.VI. 2018 - 7° Convegno Nazionale di Viticoltura - Piacenza, Italy
Duration: 9 Jul 201811 Jul 2018
https://www.unicatt.it/meetings/conavi-conavi-2018-vii-convegno-nazionale-di-viticoltura

Conference

ConferenceCO.NA.VI. 2018 - 7° Convegno Nazionale di Viticoltura
CountryItaly
CityPiacenza
Period9/07/1811/07/18
Internet address

Fingerprint Dive into the research topics of 'Linking monoterpenes and abiotic stress resistance in grapevines'. Together they form a unique fingerprint.

Cite this