Linking landscape structure and ecosystem service flow

J. Camara de Assis*, Camila Hohlenwerger, Jean Paul Metzger, Jonathan R. Rhodes, Gabriela Teixeira Duarte, Rafaela Aparecida da Silva, Andrea Larissa Boesing, Paula Ribeiro Prist, Milton Cezar Ribeiro

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

25 Citations (Scopus)

Abstract

Despite advances in understanding the effects of landscape structure on ecosystem services (ES), many challenges related to these complex spatial interactions remain. In particular, the integration of landscape effects on different components of the service provision chain (supply, demand, and flow) remains poorly understood and conceptualized. Here we propose a theoretical framework to further explore how the spatial flow of ES can vary according to landscape structure (i.e. composition and configuration) emphasizing the role played by the configuration of supply, demand, and neutral areas, as well as individual characteristics of ES (e.g., service rivalry). For this, we expand the discussion on how landscape changes can affect ES flows and propose a theoretical representation of ES flows variation led by different supply-demand ratios. Additionally, we expand this discussion by integrating the potential effects of neutral areas in the landscape as well as of supply/demand spatial overlap. This novel approach links the spatial arrangement (e.g. fragmentation, network complexity, matrix resistance) usually captured by landscape metrics, and ratios of ES supply and demand areas to potential effects on spatial flows of ES. We discuss the application of this model using widely studied ES, such as pollination, pest control by natural enemies, and microclimate regulation. Finally, we propose a research agenda to connect the presented ideas with other prominent research topics that must be further developed to support landscape management targeting ES provision. The prominence of ES science calls for contributions such as this to give the scientific community the opportunity to reflect on the underlying mechanisms of ES and avoid oversimplified spatial assessments.
Original languageEnglish
Article number101535
JournalEcosystem Services
Volume62
DOIs
Publication statusPublished - 3 Jun 2023

Keywords

  • Spatial flow
  • Landscape configuration
  • fragmentation
  • Service provision chain
  • Supply-demand ratio
  • Spatial overlap

Fingerprint

Dive into the research topics of 'Linking landscape structure and ecosystem service flow'. Together they form a unique fingerprint.

Cite this