Legumes increase grassland productivity with no effect on nitrous oxide emissions

Arlete S. Barneze*, Jeanette Whitaker, Niall P. McNamara, Nicholas J. Ostle

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)


Aims: Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods: This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results: Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions: This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.

Original languageEnglish
Pages (from-to)163-177
Number of pages15
JournalPlant and Soil
Issue number1-2
Publication statusPublished - 1 Jan 2020
Externally publishedYes


  • Carbon and nitrogen cycling
  • Grass-legume mixture
  • Greenhouse gas emissions
  • Nitrogen fertiliser
  • Plant productivity

Fingerprint Dive into the research topics of 'Legumes increase grassland productivity with no effect on nitrous oxide emissions'. Together they form a unique fingerprint.

Cite this