LC-MS residue analysis of antibiotics : what selectivity is adequate?

Research output: Thesisinternal PhD, WU

Abstract

In residue analysis of antibiotics quantitative and qualitative aspects are involved in declaring a sample non-compliant. The quantitative aspect regards the determination of the amount of the compound present in the sample. Validation procedures are available to determine the uncertainty of this result, which is taken into account in the decision making process. The qualitative aspect regards the confirmation of the identity of the compound present. In this, selectivity is the main parameter which is defined as the ability of a method to discriminate the analyte being measured from other substances. A trend observed in residue analysis is towards more generic methods for the detection of a broad range of compounds in a single run. As a result, by definition, selectivity is compromised. Procedures to determine the uncertainty of the qualitative aspect are lacking and, as a result, whether or not a method is adequately selective is a matter of experts’ judgment.

In this thesis a method is presented for grading selectivity of methods using liquid chromatography coupled to tandem mass spectrometry. Based on the outcome it can be stated if selectivity is adequate and thus if a confirmatory result stands strong when challenged in a court case. If selectivity is found inadequate, additional measures can be taken like the selection of another product ion or the use of a third product ion to obtain adequate selectivity.

Furthermore, two examples of analyses are presented in which selectivity plays an important role. First, the analysis of the banned antibiotic chloramphenicol (CAP). CAP contains two chiral centers and the nitro-group can either be para- or meta-substituted. Therefore, eight different isomers of CAP occur of which only RR-p-CAP is antimicrobially active. In the analysis of CAP, extreme selectivity is needed to distinguish the antimicrobially active compound from its inactive isomers. A method applying chiral liquid chromatography with tandem mass spectrometry was developed to discriminate antimicrobially active CAP for its inactive isomers. Also the research for the possible natural occurrence of this drug is presented. It is shown that CAP can be produced in unamended soil by Streptomyces venezuelaein appreciable amounts and that crops can take up CAP from soils. Therefore, it is concluded that CAP can occur in crops and animal feed due to its natural production by soil bacteria.

Second, the development of a multi-ß-lactam method is presented. In this method a derivatization is applied to be able to effectively detect off-label ceftiofur use. In this selectivity is intentionally compromised and no unequivocal confirmation can be carried out using this method. The developed method is applicable to a wide range of ß-lactam antibiotics including penicillins, cephalosporins and carbapenems and is the best method available today for effective monitoring of off-label ß-lactam usage in poultry breeding.

 

Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Wageningen University
Supervisors/Advisors
  • Nielen, Michel, Promotor
  • Stolker, Linda, Co-promotor
Award date14 Jun 2013
Place of PublicationS.l.
Publisher
Print ISBNs9789461735690
Publication statusPublished - 2013

Fingerprint

Chloramphenicol
Anti-Bacterial Agents
Lactams
Isomers
Liquid chromatography
Soils
Crops
Mass spectrometry
Labels
Ions
Poultry
Carbapenems
Cephalosporins
Penicillins
Bacteria
Animals
Decision making
Monitoring

Keywords

  • antibiotics
  • beta-lactam antibiotics
  • chloramphenicol
  • ceftiofur
  • food analysis
  • liquid chromatography-mass spectrometry
  • selectivity
  • antibiotic residues

Cite this

@phdthesis{f60b9fb147044cb4bde2764041e3afa6,
title = "LC-MS residue analysis of antibiotics : what selectivity is adequate?",
abstract = "In residue analysis of antibiotics quantitative and qualitative aspects are involved in declaring a sample non-compliant. The quantitative aspect regards the determination of the amount of the compound present in the sample. Validation procedures are available to determine the uncertainty of this result, which is taken into account in the decision making process. The qualitative aspect regards the confirmation of the identity of the compound present. In this, selectivity is the main parameter which is defined as the ability of a method to discriminate the analyte being measured from other substances. A trend observed in residue analysis is towards more generic methods for the detection of a broad range of compounds in a single run. As a result, by definition, selectivity is compromised. Procedures to determine the uncertainty of the qualitative aspect are lacking and, as a result, whether or not a method is adequately selective is a matter of experts’ judgment. In this thesis a method is presented for grading selectivity of methods using liquid chromatography coupled to tandem mass spectrometry. Based on the outcome it can be stated if selectivity is adequate and thus if a confirmatory result stands strong when challenged in a court case. If selectivity is found inadequate, additional measures can be taken like the selection of another product ion or the use of a third product ion to obtain adequate selectivity. Furthermore, two examples of analyses are presented in which selectivity plays an important role. First, the analysis of the banned antibiotic chloramphenicol (CAP). CAP contains two chiral centers and the nitro-group can either be para- or meta-substituted. Therefore, eight different isomers of CAP occur of which only RR-p-CAP is antimicrobially active. In the analysis of CAP, extreme selectivity is needed to distinguish the antimicrobially active compound from its inactive isomers. A method applying chiral liquid chromatography with tandem mass spectrometry was developed to discriminate antimicrobially active CAP for its inactive isomers. Also the research for the possible natural occurrence of this drug is presented. It is shown that CAP can be produced in unamended soil by Streptomyces venezuelaein appreciable amounts and that crops can take up CAP from soils. Therefore, it is concluded that CAP can occur in crops and animal feed due to its natural production by soil bacteria. Second, the development of a multi-{\ss}-lactam method is presented. In this method a derivatization is applied to be able to effectively detect off-label ceftiofur use. In this selectivity is intentionally compromised and no unequivocal confirmation can be carried out using this method. The developed method is applicable to a wide range of {\ss}-lactam antibiotics including penicillins, cephalosporins and carbapenems and is the best method available today for effective monitoring of off-label {\ss}-lactam usage in poultry breeding.  ",
keywords = "antibiotica, b{\`e}ta-lactam antibiotica, chlooramfenicol, ceftiofur, voedselanalyse, lc-ms, selectiviteit, antibioticumresiduen, antibiotics, beta-lactam antibiotics, chloramphenicol, ceftiofur, food analysis, liquid chromatography-mass spectrometry, selectivity, antibiotic residues",
author = "B.J.A. Berendsen",
note = "WU thesis 5481",
year = "2013",
language = "English",
isbn = "9789461735690",
publisher = "s.n.",
school = "Wageningen University",

}

Berendsen, BJA 2013, 'LC-MS residue analysis of antibiotics : what selectivity is adequate?', Doctor of Philosophy, Wageningen University, S.l..

LC-MS residue analysis of antibiotics : what selectivity is adequate? / Berendsen, B.J.A.

S.l. : s.n., 2013. 352 p.

Research output: Thesisinternal PhD, WU

TY - THES

T1 - LC-MS residue analysis of antibiotics : what selectivity is adequate?

AU - Berendsen, B.J.A.

N1 - WU thesis 5481

PY - 2013

Y1 - 2013

N2 - In residue analysis of antibiotics quantitative and qualitative aspects are involved in declaring a sample non-compliant. The quantitative aspect regards the determination of the amount of the compound present in the sample. Validation procedures are available to determine the uncertainty of this result, which is taken into account in the decision making process. The qualitative aspect regards the confirmation of the identity of the compound present. In this, selectivity is the main parameter which is defined as the ability of a method to discriminate the analyte being measured from other substances. A trend observed in residue analysis is towards more generic methods for the detection of a broad range of compounds in a single run. As a result, by definition, selectivity is compromised. Procedures to determine the uncertainty of the qualitative aspect are lacking and, as a result, whether or not a method is adequately selective is a matter of experts’ judgment. In this thesis a method is presented for grading selectivity of methods using liquid chromatography coupled to tandem mass spectrometry. Based on the outcome it can be stated if selectivity is adequate and thus if a confirmatory result stands strong when challenged in a court case. If selectivity is found inadequate, additional measures can be taken like the selection of another product ion or the use of a third product ion to obtain adequate selectivity. Furthermore, two examples of analyses are presented in which selectivity plays an important role. First, the analysis of the banned antibiotic chloramphenicol (CAP). CAP contains two chiral centers and the nitro-group can either be para- or meta-substituted. Therefore, eight different isomers of CAP occur of which only RR-p-CAP is antimicrobially active. In the analysis of CAP, extreme selectivity is needed to distinguish the antimicrobially active compound from its inactive isomers. A method applying chiral liquid chromatography with tandem mass spectrometry was developed to discriminate antimicrobially active CAP for its inactive isomers. Also the research for the possible natural occurrence of this drug is presented. It is shown that CAP can be produced in unamended soil by Streptomyces venezuelaein appreciable amounts and that crops can take up CAP from soils. Therefore, it is concluded that CAP can occur in crops and animal feed due to its natural production by soil bacteria. Second, the development of a multi-ß-lactam method is presented. In this method a derivatization is applied to be able to effectively detect off-label ceftiofur use. In this selectivity is intentionally compromised and no unequivocal confirmation can be carried out using this method. The developed method is applicable to a wide range of ß-lactam antibiotics including penicillins, cephalosporins and carbapenems and is the best method available today for effective monitoring of off-label ß-lactam usage in poultry breeding.  

AB - In residue analysis of antibiotics quantitative and qualitative aspects are involved in declaring a sample non-compliant. The quantitative aspect regards the determination of the amount of the compound present in the sample. Validation procedures are available to determine the uncertainty of this result, which is taken into account in the decision making process. The qualitative aspect regards the confirmation of the identity of the compound present. In this, selectivity is the main parameter which is defined as the ability of a method to discriminate the analyte being measured from other substances. A trend observed in residue analysis is towards more generic methods for the detection of a broad range of compounds in a single run. As a result, by definition, selectivity is compromised. Procedures to determine the uncertainty of the qualitative aspect are lacking and, as a result, whether or not a method is adequately selective is a matter of experts’ judgment. In this thesis a method is presented for grading selectivity of methods using liquid chromatography coupled to tandem mass spectrometry. Based on the outcome it can be stated if selectivity is adequate and thus if a confirmatory result stands strong when challenged in a court case. If selectivity is found inadequate, additional measures can be taken like the selection of another product ion or the use of a third product ion to obtain adequate selectivity. Furthermore, two examples of analyses are presented in which selectivity plays an important role. First, the analysis of the banned antibiotic chloramphenicol (CAP). CAP contains two chiral centers and the nitro-group can either be para- or meta-substituted. Therefore, eight different isomers of CAP occur of which only RR-p-CAP is antimicrobially active. In the analysis of CAP, extreme selectivity is needed to distinguish the antimicrobially active compound from its inactive isomers. A method applying chiral liquid chromatography with tandem mass spectrometry was developed to discriminate antimicrobially active CAP for its inactive isomers. Also the research for the possible natural occurrence of this drug is presented. It is shown that CAP can be produced in unamended soil by Streptomyces venezuelaein appreciable amounts and that crops can take up CAP from soils. Therefore, it is concluded that CAP can occur in crops and animal feed due to its natural production by soil bacteria. Second, the development of a multi-ß-lactam method is presented. In this method a derivatization is applied to be able to effectively detect off-label ceftiofur use. In this selectivity is intentionally compromised and no unequivocal confirmation can be carried out using this method. The developed method is applicable to a wide range of ß-lactam antibiotics including penicillins, cephalosporins and carbapenems and is the best method available today for effective monitoring of off-label ß-lactam usage in poultry breeding.  

KW - antibiotica

KW - bèta-lactam antibiotica

KW - chlooramfenicol

KW - ceftiofur

KW - voedselanalyse

KW - lc-ms

KW - selectiviteit

KW - antibioticumresiduen

KW - antibiotics

KW - beta-lactam antibiotics

KW - chloramphenicol

KW - ceftiofur

KW - food analysis

KW - liquid chromatography-mass spectrometry

KW - selectivity

KW - antibiotic residues

M3 - internal PhD, WU

SN - 9789461735690

PB - s.n.

CY - S.l.

ER -