Lateral root formation and the multiple roles of auxin

Yujuan Du, Ben Scheres*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

123 Citations (Scopus)


Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development.
Original languageEnglish
Pages (from-to)155-167
JournalJournal of Experimental Botany
Issue number2
Publication statusPublished - 1 Jan 2018


  • Arabidopsis
  • auxin
  • emergence
  • founder cell specification
  • initiation
  • lateral root
  • oscillation
  • outgrowth
  • primordium


Dive into the research topics of 'Lateral root formation and the multiple roles of auxin'. Together they form a unique fingerprint.

Cite this