TY - GEN
T1 - Large-scale random features for kernel regression
AU - Laparra, Valero
AU - Gonzalez, Diego Marcos
AU - Tuia, Devis
AU - Camps-Valls, Gustau
PY - 2015/11/10
Y1 - 2015/11/10
N2 - Kernel methods constitute a family of powerful machine learning algorithms, which have found wide use in remote sensing and geosciences. However, kernel methods are still not widely adopted because of the high computational cost when dealing with large scale problems, such as the inversion of radiative transfer models. This paper introduces the method of random kitchen sinks (RKS) for fast statistical retrieval of bio-geo-physical parameters. The RKS method allows to approximate a kernel matrix with a set of random bases sampled from the Fourier domain. We extend their use to other bases, such as wavelets, stumps, and Walsh expansions. We show that kernel regression is now possible for datasets with millions of examples and high dimensionality. Examples on atmospheric parameter retrieval from infrared sounders and biophysical parameter retrieval by inverting PROSAIL radiative transfer models with simulated Sentinel-2 data show the effectiveness of the technique.
AB - Kernel methods constitute a family of powerful machine learning algorithms, which have found wide use in remote sensing and geosciences. However, kernel methods are still not widely adopted because of the high computational cost when dealing with large scale problems, such as the inversion of radiative transfer models. This paper introduces the method of random kitchen sinks (RKS) for fast statistical retrieval of bio-geo-physical parameters. The RKS method allows to approximate a kernel matrix with a set of random bases sampled from the Fourier domain. We extend their use to other bases, such as wavelets, stumps, and Walsh expansions. We show that kernel regression is now possible for datasets with millions of examples and high dimensionality. Examples on atmospheric parameter retrieval from infrared sounders and biophysical parameter retrieval by inverting PROSAIL radiative transfer models with simulated Sentinel-2 data show the effectiveness of the technique.
U2 - 10.1109/IGARSS.2015.7325686
DO - 10.1109/IGARSS.2015.7325686
M3 - Conference paper
AN - SCOPUS:84962562445
SN - 9781479979295
T3 - International Geoscience and Remote Sensing Symposium (IGARSS)
SP - 17
EP - 20
BT - 2015 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015
Y2 - 26 July 2015 through 31 July 2015
ER -