TY - JOUR
T1 - Is fat perception a thermal effect?
AU - Prinz, J.F.
AU - Huntjens, L.
AU - de Wijk, R.A.
AU - Engelen, L.
AU - Polet, I.A.
PY - 2007
Y1 - 2007
N2 - It has been generally assumed that fat is detected by its flavour and by its lubrication of the oral mucosa. A recent study reported a correlation of -.99 between perceived temperature of a product and its fat content. This was significantly higher than correlations of sensory scores for fat flavour, mouthfeel, and afterfeel. This suggested a third detection mechanism; fat may be detected via its effect on the thermal conductivity of the food. In 3 studies, thermal sensitivity in humans was investigated to verify whether oral thermal receptors are sufficiently rapid and accurate to play a role in the perception of fats. The thermal sensitivity of the lips and oral mucosa of the anterior and middle one-third of the tongue were assessed using a Peltier device. Subjects detected 0.5 Hz fluctuations in temperature of 0.08'C on the lower lip, 0.26 degrees C and 1.36 degrees C at the tip and dorsum of the tongue, demonstrating that the lips are sufficiently sensitive to detect small differences in temperature. In two further experiments subjects ingested custards and mayonnaises and then spat out samples after 5, 10, or 20 sec. The temperature of the food and oral mucosa was measured before and after spitting and the rates of heating were calculated. Results suggest assessment of thermal conductivity of food may be used to assess fat content.
AB - It has been generally assumed that fat is detected by its flavour and by its lubrication of the oral mucosa. A recent study reported a correlation of -.99 between perceived temperature of a product and its fat content. This was significantly higher than correlations of sensory scores for fat flavour, mouthfeel, and afterfeel. This suggested a third detection mechanism; fat may be detected via its effect on the thermal conductivity of the food. In 3 studies, thermal sensitivity in humans was investigated to verify whether oral thermal receptors are sufficiently rapid and accurate to play a role in the perception of fats. The thermal sensitivity of the lips and oral mucosa of the anterior and middle one-third of the tongue were assessed using a Peltier device. Subjects detected 0.5 Hz fluctuations in temperature of 0.08'C on the lower lip, 0.26 degrees C and 1.36 degrees C at the tip and dorsum of the tongue, demonstrating that the lips are sufficiently sensitive to detect small differences in temperature. In two further experiments subjects ingested custards and mayonnaises and then spat out samples after 5, 10, or 20 sec. The temperature of the food and oral mucosa was measured before and after spitting and the rates of heating were calculated. Results suggest assessment of thermal conductivity of food may be used to assess fat content.
U2 - 10.2466/PMS.104.2.381-386
DO - 10.2466/PMS.104.2.381-386
M3 - Article
VL - 104
SP - 381
EP - 386
JO - Perceptual and Motor Skills
JF - Perceptual and Motor Skills
SN - 0031-5125
IS - 2
ER -