TY - JOUR
T1 - Ion-Induced Reassembly between Protein Nanotubes and Nanospheres
AU - Zhang, Jipeng
AU - Liu, Bin
AU - Li, Dan
AU - Radiom, Milad
AU - Zhang, Huijuan
AU - Cohen Stuart, Martien A.
AU - Sagis, Leonard Martin C.
AU - Li, Zekun
AU - Chen, Shanan
AU - Li, Xing
AU - Li, Yuan
PY - 2023/8/29
Y1 - 2023/8/29
N2 - Proteins used as building blocks to template nanostructures with manifold morphologies have been widely reported. Understanding their self-assembly and reassembly mechanism is important for designing functional biomaterials. Herein, we show that enzyme-hydrolyzed α-lactalbumin (α-lac) can self-assemble into either nanotubes in the presence of Ca2+ ions or nanospheres in the absence of Ca2+ in solution. Remarkably, such assembled α-lac nanotubes can be elongated by adding preassembled α-lac nanospheres and Ca2+ solution, which suggests that the self-assembled α-lac nanospheres undergo disassembly and reassembly processes into existing nanotube nuclei. By performing atomic force microscopy (AFM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), it indicates that there is an equilibrium among nanotubes, nanospheres, hydrolyzed α-lac, and Ca2+ in solution. The structural transition between nanotubes and nanospheres is driven from a less stable structure into a more stable structure determined by the conditions. During the transition from nanospheres into nanotubes, the hydrolyzed α-lac in nanospheres transfers into helical ribbon form at both nanotube extremities. Then helical ribbons close into mature nanotubes, extending the length of the initial nuclei. Besides, by dilution or adding ethylene glycol bis(2-aminoethyl ether) tetraacetic acid (EGTA), the decreased Ca2+ concentration in solution drives the Ca2+ dissociating from nanotubes into solution, leading to the transitions from nanotubes into nanospheres. The reversible transformation between nanotubes and nanospheres is achieved by adjusting the pH value from 7.5 to 5.0 and back to 7.5. This is because the stability of nanotubes decreases from pH 7.5 to 5 but increases from 5 to 7.5. Significantly, this approach can be used for the fabrication of various responsive nanomaterials from the same starting material.
AB - Proteins used as building blocks to template nanostructures with manifold morphologies have been widely reported. Understanding their self-assembly and reassembly mechanism is important for designing functional biomaterials. Herein, we show that enzyme-hydrolyzed α-lactalbumin (α-lac) can self-assemble into either nanotubes in the presence of Ca2+ ions or nanospheres in the absence of Ca2+ in solution. Remarkably, such assembled α-lac nanotubes can be elongated by adding preassembled α-lac nanospheres and Ca2+ solution, which suggests that the self-assembled α-lac nanospheres undergo disassembly and reassembly processes into existing nanotube nuclei. By performing atomic force microscopy (AFM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), it indicates that there is an equilibrium among nanotubes, nanospheres, hydrolyzed α-lac, and Ca2+ in solution. The structural transition between nanotubes and nanospheres is driven from a less stable structure into a more stable structure determined by the conditions. During the transition from nanospheres into nanotubes, the hydrolyzed α-lac in nanospheres transfers into helical ribbon form at both nanotube extremities. Then helical ribbons close into mature nanotubes, extending the length of the initial nuclei. Besides, by dilution or adding ethylene glycol bis(2-aminoethyl ether) tetraacetic acid (EGTA), the decreased Ca2+ concentration in solution drives the Ca2+ dissociating from nanotubes into solution, leading to the transitions from nanotubes into nanospheres. The reversible transformation between nanotubes and nanospheres is achieved by adjusting the pH value from 7.5 to 5.0 and back to 7.5. This is because the stability of nanotubes decreases from pH 7.5 to 5 but increases from 5 to 7.5. Significantly, this approach can be used for the fabrication of various responsive nanomaterials from the same starting material.
U2 - 10.1021/acs.biomac.3c00284
DO - 10.1021/acs.biomac.3c00284
M3 - Article
C2 - 37642585
AN - SCOPUS:85170582042
SN - 1525-7797
VL - 24
SP - 3985
EP - 3995
JO - Biomacromolecules
JF - Biomacromolecules
IS - 9
ER -