Investigating the fruit texture genetic control in apple and its interplay with the production of volatile compounds using multi-family based analysis and genome wide association mapping

Mario Di Guardo

Research output: Thesisinternal PhD, WUAcademic

Abstract

Although varying with context, quality of fresh fruits includes several properties such as color, texture, flavor and health promoting compounds. This thesis focused on two important quality aspects, namely texture and aroma in apple, and defining the genomic regions involved in the control of these two features. The genetic control of texture and VOCs production have been investigated using two marker-trait association analysis approaches: Pedigree Based Analysis (PBA) and Genome Wide Association Study (GWAS). In chapter 2, ASSIsT (Automatic SNP ScorIng Tool), a software dedicated for the efficient calling and filtering of SNPs from Illumina InfiniumÒ arrays is presented. ASSIsT builds on GenomeStudio® derived data and identifies markers showing reliable genotype calls (bi-allelic segregation pattern). In addition, ASSIsT identifies and re-edits SNP calls of markers showing additional alleles (null alleles or additional SNPs in the probe annealing site). Chapter 3 aimed to dissect the genetic control of fruit firmness in apple during storage through PBA and employing 24 bi-parental families (1216 individuals) connected by a common pedigree structure. Ten QTLs were identified encompassing eight linkage groups, which unravelled a QTL dynamics over storage shedding light on the specific genetic control at each time-point. Chapter 4: aimed to comprehensively decipher the genetic control of fruit texture. Two complementing QTL mapping approaches were employed together with a novel and high sophisticated phenotyping device for fruit texture. The PBA was carried out on six full-sib pedigreed families (416 individuals), while the GWAS was performed on a collection of 233 apple accessions. The texture analyser employed (TAXT-AED texture analyser) allowed the measurement of both the mechanical properties (firmness) and the acoustic properties (crispness) of fruit texture. The QTL results indicated chromosome 10 being associated in changes of the mechanical properties of fruit texture, while chromosomes 2 and 14 were more associated to the acoustic response. In Chapter 5 the interplay between texture and volatile organic compounds (VOCs) was investigated in 162 apple accessions. The array of volatile compounds phenotyped was implemented into a GWAS identifying seven chromosomes harbouring important candidate genes for aroma, such as MdAAT1 and MdIGS. Next, volatilome and fruit texture data were integrated revealing a negative correlation between these two features.

Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Wageningen University
Supervisors/Advisors
  • Visser, Richard, Promotor
  • van de Weg, Eric, Co-promotor
  • Costa, F., Co-promotor, External person
Award date21 Sep 2017
Place of PublicationWageningen
Publisher
Print ISBNs9789463432054
DOIs
Publication statusPublished - 2017

Fingerprint

volatile compounds
chromosome mapping
apples
texture
fruits
genome
pedigree
quantitative trait loci
volatile organic compounds
chromosomes
mechanical properties
firmness
odors
acoustic properties
health promotion
null alleles
annealing
raw fruit
linkage groups
probes (equipment)

Keywords

  • malus domestica
  • apples
  • fruit
  • fruit growing
  • genetics
  • plant breeding
  • genome analysis

Cite this

@phdthesis{602af4cbbd45497897495b69d22bdcc5,
title = "Investigating the fruit texture genetic control in apple and its interplay with the production of volatile compounds using multi-family based analysis and genome wide association mapping",
abstract = "Although varying with context, quality of fresh fruits includes several properties such as color, texture, flavor and health promoting compounds. This thesis focused on two important quality aspects, namely texture and aroma in apple, and defining the genomic regions involved in the control of these two features. The genetic control of texture and VOCs production have been investigated using two marker-trait association analysis approaches: Pedigree Based Analysis (PBA) and Genome Wide Association Study (GWAS). In chapter 2, ASSIsT (Automatic SNP ScorIng Tool), a software dedicated for the efficient calling and filtering of SNPs from Illumina Infinium{\`O} arrays is presented. ASSIsT builds on GenomeStudio{\circledR} derived data and identifies markers showing reliable genotype calls (bi-allelic segregation pattern). In addition, ASSIsT identifies and re-edits SNP calls of markers showing additional alleles (null alleles or additional SNPs in the probe annealing site). Chapter 3 aimed to dissect the genetic control of fruit firmness in apple during storage through PBA and employing 24 bi-parental families (1216 individuals) connected by a common pedigree structure. Ten QTLs were identified encompassing eight linkage groups, which unravelled a QTL dynamics over storage shedding light on the specific genetic control at each time-point. Chapter 4: aimed to comprehensively decipher the genetic control of fruit texture. Two complementing QTL mapping approaches were employed together with a novel and high sophisticated phenotyping device for fruit texture. The PBA was carried out on six full-sib pedigreed families (416 individuals), while the GWAS was performed on a collection of 233 apple accessions. The texture analyser employed (TAXT-AED texture analyser) allowed the measurement of both the mechanical properties (firmness) and the acoustic properties (crispness) of fruit texture. The QTL results indicated chromosome 10 being associated in changes of the mechanical properties of fruit texture, while chromosomes 2 and 14 were more associated to the acoustic response. In Chapter 5 the interplay between texture and volatile organic compounds (VOCs) was investigated in 162 apple accessions. The array of volatile compounds phenotyped was implemented into a GWAS identifying seven chromosomes harbouring important candidate genes for aroma, such as MdAAT1 and MdIGS. Next, volatilome and fruit texture data were integrated revealing a negative correlation between these two features.",
keywords = "malus domestica, apples, fruit, fruit growing, genetics, plant breeding, genome analysis, malus domestica, appels, fruit, fruitteelt, genetica, plantenveredeling, genoomanalyse",
author = "{Di Guardo}, Mario",
note = "WU thesis 6754 Includes bibliographical references. - With summary in English",
year = "2017",
doi = "10.18174/414274",
language = "English",
isbn = "9789463432054",
publisher = "Wageningen University",
school = "Wageningen University",

}

Investigating the fruit texture genetic control in apple and its interplay with the production of volatile compounds using multi-family based analysis and genome wide association mapping. / Di Guardo, Mario.

Wageningen : Wageningen University, 2017. 177 p.

Research output: Thesisinternal PhD, WUAcademic

TY - THES

T1 - Investigating the fruit texture genetic control in apple and its interplay with the production of volatile compounds using multi-family based analysis and genome wide association mapping

AU - Di Guardo, Mario

N1 - WU thesis 6754 Includes bibliographical references. - With summary in English

PY - 2017

Y1 - 2017

N2 - Although varying with context, quality of fresh fruits includes several properties such as color, texture, flavor and health promoting compounds. This thesis focused on two important quality aspects, namely texture and aroma in apple, and defining the genomic regions involved in the control of these two features. The genetic control of texture and VOCs production have been investigated using two marker-trait association analysis approaches: Pedigree Based Analysis (PBA) and Genome Wide Association Study (GWAS). In chapter 2, ASSIsT (Automatic SNP ScorIng Tool), a software dedicated for the efficient calling and filtering of SNPs from Illumina InfiniumÒ arrays is presented. ASSIsT builds on GenomeStudio® derived data and identifies markers showing reliable genotype calls (bi-allelic segregation pattern). In addition, ASSIsT identifies and re-edits SNP calls of markers showing additional alleles (null alleles or additional SNPs in the probe annealing site). Chapter 3 aimed to dissect the genetic control of fruit firmness in apple during storage through PBA and employing 24 bi-parental families (1216 individuals) connected by a common pedigree structure. Ten QTLs were identified encompassing eight linkage groups, which unravelled a QTL dynamics over storage shedding light on the specific genetic control at each time-point. Chapter 4: aimed to comprehensively decipher the genetic control of fruit texture. Two complementing QTL mapping approaches were employed together with a novel and high sophisticated phenotyping device for fruit texture. The PBA was carried out on six full-sib pedigreed families (416 individuals), while the GWAS was performed on a collection of 233 apple accessions. The texture analyser employed (TAXT-AED texture analyser) allowed the measurement of both the mechanical properties (firmness) and the acoustic properties (crispness) of fruit texture. The QTL results indicated chromosome 10 being associated in changes of the mechanical properties of fruit texture, while chromosomes 2 and 14 were more associated to the acoustic response. In Chapter 5 the interplay between texture and volatile organic compounds (VOCs) was investigated in 162 apple accessions. The array of volatile compounds phenotyped was implemented into a GWAS identifying seven chromosomes harbouring important candidate genes for aroma, such as MdAAT1 and MdIGS. Next, volatilome and fruit texture data were integrated revealing a negative correlation between these two features.

AB - Although varying with context, quality of fresh fruits includes several properties such as color, texture, flavor and health promoting compounds. This thesis focused on two important quality aspects, namely texture and aroma in apple, and defining the genomic regions involved in the control of these two features. The genetic control of texture and VOCs production have been investigated using two marker-trait association analysis approaches: Pedigree Based Analysis (PBA) and Genome Wide Association Study (GWAS). In chapter 2, ASSIsT (Automatic SNP ScorIng Tool), a software dedicated for the efficient calling and filtering of SNPs from Illumina InfiniumÒ arrays is presented. ASSIsT builds on GenomeStudio® derived data and identifies markers showing reliable genotype calls (bi-allelic segregation pattern). In addition, ASSIsT identifies and re-edits SNP calls of markers showing additional alleles (null alleles or additional SNPs in the probe annealing site). Chapter 3 aimed to dissect the genetic control of fruit firmness in apple during storage through PBA and employing 24 bi-parental families (1216 individuals) connected by a common pedigree structure. Ten QTLs were identified encompassing eight linkage groups, which unravelled a QTL dynamics over storage shedding light on the specific genetic control at each time-point. Chapter 4: aimed to comprehensively decipher the genetic control of fruit texture. Two complementing QTL mapping approaches were employed together with a novel and high sophisticated phenotyping device for fruit texture. The PBA was carried out on six full-sib pedigreed families (416 individuals), while the GWAS was performed on a collection of 233 apple accessions. The texture analyser employed (TAXT-AED texture analyser) allowed the measurement of both the mechanical properties (firmness) and the acoustic properties (crispness) of fruit texture. The QTL results indicated chromosome 10 being associated in changes of the mechanical properties of fruit texture, while chromosomes 2 and 14 were more associated to the acoustic response. In Chapter 5 the interplay between texture and volatile organic compounds (VOCs) was investigated in 162 apple accessions. The array of volatile compounds phenotyped was implemented into a GWAS identifying seven chromosomes harbouring important candidate genes for aroma, such as MdAAT1 and MdIGS. Next, volatilome and fruit texture data were integrated revealing a negative correlation between these two features.

KW - malus domestica

KW - apples

KW - fruit

KW - fruit growing

KW - genetics

KW - plant breeding

KW - genome analysis

KW - malus domestica

KW - appels

KW - fruit

KW - fruitteelt

KW - genetica

KW - plantenveredeling

KW - genoomanalyse

U2 - 10.18174/414274

DO - 10.18174/414274

M3 - internal PhD, WU

SN - 9789463432054

PB - Wageningen University

CY - Wageningen

ER -