Interacting effects of temperature integration and light intensity on growth and development of single-stemmed cut rose plants

    Research output: Contribution to journalArticleAcademicpeer-review

    18 Citations (Scopus)

    Abstract

    Energy conservation in horticulture can be achieved by allowing temperatures to fluctuate within predefined bandwidths instead of using rigid set points for heating and ventilation. In temperature integration, plants are supposed to compensate effects of temporarily deviations of the average temperature some time later by deviations in the opposite direction. However, little is still known on the effects of integration periods exceeding 1 day. In this study, effects of temperature integration on growth and development of single-stemmed cut rose plants were determined. Pruned rose shoots were placed in climate chambers in which light levels switched daily (2 days integration period) or weekly (14 days integration period) from high light intensity (300 ¿mol m¿2 s¿1) to low light (150 ¿mol m¿2 s¿1). Temperatures were kept continuously at 20 °C (control) or changed with the light intensity (phase, high temperature at high light intensity, low temperature at low light intensity) or changed opposite to the light intensity (counter phase). Bandwidths of temperature integration were 0, 6 or 10 °C. Under these conditions, buds grew out to harvestable shoots in approximately 45 days. At both integration periods, shoot length was significantly reduced with increasing bandwidths of temperature integration. Shoot dry weights were reduced when a bandwidth of 10 °C was applied. At both integration periods, rates of photosynthesis were primarily determined by light intensity. However, in the counter phase treatments, photosynthesis rate at high light and low temperature was reduced compared to the high light condition of the control. Under these conditions, starch content increased to approximately 10%, suggesting a feedback inhibition of the rate of photosynthesis. However, this did not (yet) affect plant growth or development.
    Original languageEnglish
    Pages (from-to)182-187
    JournalScientia Horticulturae
    Volume113
    Issue number2
    DOIs
    Publication statusPublished - 2007

    Keywords

    • photosynthesis
    • regimes
    • irradiance
    • morphology
    • tomato
    • leaves
    • yield

    Fingerprint

    Dive into the research topics of 'Interacting effects of temperature integration and light intensity on growth and development of single-stemmed cut rose plants'. Together they form a unique fingerprint.

    Cite this