Abstract
We examine the spectral stability of travelling waves of the haptotaxis model studied in [K. Harley et al., SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 366-396]. In the process we apply Lienard coordinates to the linearized stability problem and use a Riccati-Transform/Grassmannian spectral shooting method \a la [K. Harley et al., Math. Biosci., 266 (2015), pp. 36-51; V. Ledoux et al., SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 480-507; V. Ledoux, S. J. A. Malham, and V. Th\"ummler, Math. Comp., 79 (2010), pp. 1585-1619] in order to numerically compute the Evans function and point spectrum of a linearized operator associated with a travelling wave. We numerically show the instability of nonmonotone waves (type IV) and the stability of the monotone ones (types I-III) to perturbations in an appropriately weighted space.
Original language | English |
---|---|
Pages (from-to) | 1629-1653 |
Number of pages | 25 |
Journal | SIAM Journal on Applied Mathematics |
Volume | 80 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2020 |
Externally published | Yes |
Keywords
- Evans function
- haptotaxis
- Lienard coordinates
- stability of travelling waves