Insertion-Sequence-Mediated Mutations Isolated During Adaptation to Growth and Starvation in Lactococcus lactis.

J.A.G.M. de Visser, A.D.L. Akkermans, R.F. Hoekstra, W.M. de Vos

Research output: Contribution to journalArticleAcademicpeer-review

34 Citations (Scopus)


We studied the activity of three multicopy insertion sequence (IS) elements in 12 populations of Lactococcus lactis IL1403 that evolved in the laboratory for 1000 generations under various environmental conditions (growth or starvation and shaken or stationary). Using RFLP analysis of single-clone representatives of each population, nine IS-mediated Mutations were detected across all environmental conditions and all involving IS981. When it was assumed that these mutations were neutral, their frequency was higher tinder shaken than under stationary conditions, possibly due to oxygen stress. We characterized seven of the nine mutations at the molecular level and studied their population dynamics where possible. Two were simple insertions into new positions and the other five were recombinational deletions (of 0 kb) among existing and new copies of IS981; in all but one case these mutations disrupted gene functions. The best candidate beneficial mutations were two deletions of which similar versions were detected in two populations each. One of these two parallel deletions, affecting a gene involved in bacteriophage resistance, showed intermediate rearrangements and may also have resulted from increased local transposition rates.
Original languageEnglish
Pages (from-to)1145-1157
Issue number3
Publication statusPublished - 2004


  • term experimental evolution
  • escherichia-coli
  • transposable elements
  • beneficial mutations
  • adaptive evolution
  • stationary-phase
  • populations
  • rearrangements
  • generations
  • diversity


Dive into the research topics of 'Insertion-Sequence-Mediated Mutations Isolated During Adaptation to Growth and Starvation in Lactococcus lactis.'. Together they form a unique fingerprint.

Cite this