TY - JOUR
T1 - Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution
AU - Malenovsky, Z.
AU - Martin, E.
AU - Homolova, L.
AU - Gastellu-Etchegory, J.P.
AU - Zurita Milla, R.
AU - Schaepman, M.E.
AU - Pokorny, R.
AU - Clevers, J.G.P.W.
AU - Cudlin, P.
PY - 2008
Y1 - 2008
N2 - A detailed sensitivity analysis investigating the effect of woody elements introduced into the Discrete Anisotropic Radiative Transfer (DART) model on the nadir bidirectional reflectance factor (BRF) for a simulated Norway spruce canopy was performed at a very high spatial resolution (modelling resolution 0.2 m, output pixel size 0.4 m). We used such a high resolution to be able to parameterize DART in an appropriate way and subsequently to gain detailed understanding of the influence of woody elements contributing to the radiative transfer within heterogeneous canopies. Three scenarios were studied by modelling the Norway spruce canopy as being composed of i) leaves, ii) leaves, trunks and first order branches, and finally iii) leaves, trunks, first order branches and small woody twigs simulated using mixed cells (i.e. cells approximated as composition of leaves and/or twigs turbid medium, and large woody constituents). The simulation of each scenario was performed for 10 different canopy closures (CC = 50¿95%, in steps of 5%), 25 leaf area index (LAI = 3.0¿15.0 m2 m¿ 2, in steps of 0.5 m2 m¿ 2), and in four spectral bands (centred at 559, 671, 727, and 783 nm, with a FWHM of 10 nm). The influence of woody elements was evaluated separately for both, sunlit and shaded parts of the simulated forest canopy, respectively. The DART results were verified by quantifying the simulated nadir BRF of each scenario with measured Airborne Imaging Spectroradiometer (AISA) Eagle data (pixel size of 0.4 m). These imaging spectrometer data were acquired over the same Norway spruce stand that was used to parameterise the DART model.
AB - A detailed sensitivity analysis investigating the effect of woody elements introduced into the Discrete Anisotropic Radiative Transfer (DART) model on the nadir bidirectional reflectance factor (BRF) for a simulated Norway spruce canopy was performed at a very high spatial resolution (modelling resolution 0.2 m, output pixel size 0.4 m). We used such a high resolution to be able to parameterize DART in an appropriate way and subsequently to gain detailed understanding of the influence of woody elements contributing to the radiative transfer within heterogeneous canopies. Three scenarios were studied by modelling the Norway spruce canopy as being composed of i) leaves, ii) leaves, trunks and first order branches, and finally iii) leaves, trunks, first order branches and small woody twigs simulated using mixed cells (i.e. cells approximated as composition of leaves and/or twigs turbid medium, and large woody constituents). The simulation of each scenario was performed for 10 different canopy closures (CC = 50¿95%, in steps of 5%), 25 leaf area index (LAI = 3.0¿15.0 m2 m¿ 2, in steps of 0.5 m2 m¿ 2), and in four spectral bands (centred at 559, 671, 727, and 783 nm, with a FWHM of 10 nm). The influence of woody elements was evaluated separately for both, sunlit and shaded parts of the simulated forest canopy, respectively. The DART results were verified by quantifying the simulated nadir BRF of each scenario with measured Airborne Imaging Spectroradiometer (AISA) Eagle data (pixel size of 0.4 m). These imaging spectrometer data were acquired over the same Norway spruce stand that was used to parameterise the DART model.
KW - leaf-area index
KW - radiative-transfer models
KW - net primary production
KW - gross primary production
KW - remotely-sensed data
KW - modis-lai product
KW - vegetation indexes
KW - bidirectional reflectance
KW - biophysical variables
KW - spectral properties
U2 - 10.1016/j.rse.2006.02.028
DO - 10.1016/j.rse.2006.02.028
M3 - Article
SN - 0034-4257
VL - 112
SP - 1
EP - 18
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
IS - 1
ER -