Influence of wing kinematics on aerodynamic performance in hovering insect flight

F.M. Bos, D. Lentink, B.W. van Oudheusden, H. Bijl

Research output: Contribution to journalArticleAcademicpeer-review

119 Citations (Scopus)


The influence of different wing kinematic models on the aerodynamic performance of a hovering insect is investigated by means of two-dimensional time-dependent Navier¿Stokes simulations. For this, simplified models are compared with averaged representations of the hovering fruit fly wing kinematics. With increasing complexity, a harmonic model, a Robofly model and two more-realistic fruit fly models are considered, all dynamically scaled at Re = 110. To facilitate the comparison, the parameters of the models were selected such that their mean quasi-steady lift coefficients were matched. Details of the vortex dynamics, as well as the resulting lift and drag forces, were studied. The simulation results reveal that the fruit fly wing kinematics result in forces that differ significantly from those resulting from the simplified wing kinematic models. In addition, light is shed on the effect of different characteristic features of the insect wing motion. The angle of attack variation used by fruit flies increases aerodynamic performance, whereas the deviation is probably used for levelling the forces over the cycle.
Original languageEnglish
Pages (from-to)341-368
JournalJournal of Fluid Mechanics
Publication statusPublished - 2008


  • low reynolds-numbers
  • flapping flight
  • propulsive efficiency
  • numerical-simulation
  • circular-cylinder
  • viscous-flow
  • rotation
  • vortex
  • model
  • generation


Dive into the research topics of 'Influence of wing kinematics on aerodynamic performance in hovering insect flight'. Together they form a unique fingerprint.

Cite this