Influence of nonlinear sorption kinetics on the slow-desorbing organic contaminant fraction in soil

W. Schlebaum, G. Schraa, W.H. van Riemsdijk

Research output: Contribution to journalArticleAcademicpeer-review

39 Citations (Scopus)

Abstract

Release rates of hydrophobic organic compounds (HOCs) from the soil matrix influence the availability of HOCs in soils or sediments for microbial degradation or removal by physical means (e.g., soil washing or soil venting). In this study it was shown that the initial contaminant concentration influences the desorption rate. This was attributed to the presence of a limited number of high affinity sites that cause nonlinear sorption behavior. The experimental results could be described with a kinetic model composed of two separate compartments. One compartment was described with a Freundlich isotherm and corresponding kinetics and was assumed to represent sorption to high affinity sites. The second compartment was described with a linear sorption isotherm and first-order kinetics. The model was used to simulate the influence of purging strategies on removal of QCB. The simulations showed that after removal of a fast-desorbing fraction, the slow-desorbing fraction could be efficiently removed at very low purging rates. Intermittent purging reduced the total purging time but the simulations showed large fluctuations in the aqueous pentachlorobenzene concentration. For each subsequent purging interval, the purging efficiency decreased due to the nonlinear desorption kinetics of the slow-desorbing fraction of pentachlorobenzene. | Release rates of hydrophobic organic compounds (HOCs) from the soil matrix influence the availability of HOCs in soils or sediments for microbial degradation or removal by physical means (e.g., soil washing or soil venting). In this study it was shown that the initial contaminant concentration influences the desorption rate. This was attributed to the presence of a limited number of high affinity sites that cause nonlinear sorption behavior. The experimental results could be described with a kinetic model composed of two separate compartments. One compartment was described with a Freundlich isotherm and corresponding kinetics and was assumed to represent sorption to high affinity sites. The second compartment was described with a linear sorption isotherm and first-order kinetics. The model was used to simulate the influence of purging strategies on removal of QCB. The simulations showed that after removal of a fast-desorbing fraction, the slow-desorbing fraction could be efficiently removed at very low purging rates. Intermittent purging reduced the total purging time but the simulations showed large fluctuations in the aqueous pentachlorobenzene concentration. For each subsequent purging interval, the purging efficiency decreased due to the nonlinear desorption kinetics of the slow-desorbing fraction of pentachlorobenzene.
Original languageEnglish
Pages (from-to)1413-1417
JournalEnvironmental Science and Technology
Volume33
Issue number9
DOIs
Publication statusPublished - 1999

Fingerprint Dive into the research topics of 'Influence of nonlinear sorption kinetics on the slow-desorbing organic contaminant fraction in soil'. Together they form a unique fingerprint.

  • Cite this