Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

P.E.V. van Walsum

Research output: Working paperPreprint

Abstract

Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a good soil or from capillary rise. With good supply of moisture, the dynamic model simulates up to 10% less actual evapotranspiration than the static one in the example. This can lead to cases where the dynamic model predicts a slight increase of the recharge in a climate scenario, where the static model predicts a decrease. The use of a dynamic model also affects the simulated demand for surface water from external sources; especially the timing is affected. The proposed modelling approach uses postulated relationships that require validation with controlled field trials. In the Netherlands there is a lack of experimental facilities for performing such validations.
Original languageEnglish
PublisherEuropean Geosciences Union
Pages10151-10193
DOIs
Publication statusPublished - 17 Nov 2011

Publication series

NameHydrology and Earth System Sciences Discussions
PublisherCopernicus GmbH
Volume8
ISSN (Print)1812-2108

Fingerprint

Dive into the research topics of 'Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios'. Together they form a unique fingerprint.

Cite this